Ugrás a tartalomhoz

Sokszögszámok

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából
(Síkszám szócikkből átirányítva)

A matematikában sokszögszámnak nevezzük az olyan természetes számokat, mely (kavicsok, pontok stb. segítségével kirakva) szabályos sokszög alakba rendezhető. A kétdimenziós figurális számok egyik fajtáját adják. A püthagoreusok vették észre, hogy a számokat kavicsokkal vagy magokkal szemléltetve azokat különféle módokon el tudják rendezni. A 10-es szám például háromszög alakba rendezhető (háromszögszámok):

*
*  *
*  *  *
*  *  *  *

A 10-et nem lehet négyzetszám alakba rendezni, a 9-et viszont igen:

*  *  *
*  *  *
*  *  *

Bizonyos számok, például a 36, négyzet és háromszög alakba is rendezhetők (háromszögű négyzetszám):

*  *  *  *  *  *
*  *  *  *  *  *
*  *  *  *  *  *
*  *  *  *  *  *
*  *  *  *  *  *
*  *  *  *  *  *

   

*
*  *
*  *  *
*  *  *  *
*  *  *  *  *
*  *  *  *  *  *
*  *  *  *  *  *  *
*  *  *  *  *  *  *  *

Megegyezés szerint bármilyen oldalú sokszögszám esetén 1 a legelső szám. A második szám szükségképpen a sokszög csúcsainak száma. A sokszög megnagyobbítása úgy történik, hogy két szomszédos oldalát kiterjesztjük egy pöttyel, majd elvégezzük a pontok közötti szükséges kiegészítést. A következő ábrákon a hozzáadott réteget piros színnel jelöljük.

Háromszögszámok:

Négyzetszámok:

A000290 The squares: a(n) = n^2. [1]

Ötszögszámok:

A000326 Pentagonal numbers: n(3n-1)/2. [2]

Hatszögszámok:

A000384 Hexagonal numbers: n(2n-1). [3]

Ha s a sokszög oldalainak száma, az n-edik s-szögszámot – P(s,n) – a következő képlet adja:

vagy

.
Név Képlet n =
1 2 3 4 5 6 7 8 9 10 11 12 13
Háromszögszám ½n(1n + 1) 1 3 6 10 15 21 28 36 45 55 66 78 91
Négyzetszám ½n(2n – 0) 1 4 9 16 25 36 49 64 81 100 121 144 169
Ötszögszám ½n(3n – 1) 1 5 12 22 35 51 70 92 117 145 176 210 247
Hatszögszám ½n(4n – 2) 1 6 15 28 45 66 91 120 153 190 231 276 325
Hétszögszám ½n(5n – 3) 1 7 18 34 55 81 112 148 189 235 286 342 403
Nyolcszögszám ½n(6n – 4) 1 8 21 40 65 96 133 176 225 280 341 408 481
Kilencszögszám ½n(7n – 5) 1 9 24 46 75 111 154 204 261 325 396 474 559
Tízszögszám ½n(8n – 6) 1 10 27 52 85 126 175 232 297 370 451 540 637
11-szögszám ½n(9n – 7) 1 11 30 58 95 141 196 260 333 415 506 606 715
12-szögszám ½n(10n – 8) 1 12 33 64 105 156 217 288 369 460 561 672 793
13-szögszám ½n(11n – 9) 1 13 36 70 115 171 238 316 405 505 616 738 871
14-szögszám ½n(12n – 10) 1 14 39 76 125 186 259 344 441 550 671 804 949
15-szögszám ½n(13n – 11) 1 15 42 82 135 201 280 372 477 595 726 870 1027
16-szögszám ½n(14n – 12) 1 16 45 88 145 216 301 400 513 640 781 936 1105
17-szögszám ½n(15n – 13) 1 17 48 94 155 231 322 428 549 685 836 1002 1183
18-szögszám ½n(16n – 14) 1 18 51 100 165 246 343 456 585 730 891 1068 1261
19-szögszám ½n(17n – 15) 1 19 54 106 175 261 364 484 621 775 946 1134 1339
20-szögszám ½n(18n – 16) 1 20 57 112 185 276 385 512 657 820 1001 1200 1417
21-szögszám ½n(19n – 17) 1 21 60 118 195 291 406 540 693 865 1056 1266 1495
22-szögszám ½n(20n – 18) 1 22 63 124 205 306 427 568 729 910 1111 1332 1573
23-szögszám ½n(21n – 19) 1 23 66 130 215 321 448 596 765 955 1166 1398 1651
24-szögszám ½n(22n – 20) 1 24 69 136 225 336 469 624 801 1000 1221 1464 1729
25-szögszám ½n(23n – 21) 1 25 72 142 235 351 490 652 837 1045 1276 1530 1807
26-szögszám ½n(24n – 22) 1 26 75 148 245 366 511 680 873 1090 1331 1596 1885
27-szögszám ½n(25n – 23) 1 27 78 154 255 381 532 708 909 1135 1386 1662 1963
28-szögszám ½n(26n – 24) 1 28 81 160 265 396 553 736 945 1180 1441 1728 2041
29-szögszám ½n(27n – 25) 1 29 84 166 275 411 574 764 981 1225 1496 1794 2119
30-szögszám ½n(28n – 26) 1 30 87 172 285 426 595 792 1017 1270 1551 1860 2197

Általánosított sokszögszámok

[szerkesztés]

Az általánosított sokszögszámok ugyanazzal a képlettel állnak elő, mint a „sima” sokszögszámok, de az n értékeire a pozitív egész számok mellett a nullát és a negatív egész számokat is megengedjük.

További információk

[szerkesztés]

Kapcsolódó szócikkek

[szerkesztés]