Ugrás a tartalomhoz

Optika

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából
(Fénytan szócikkből átirányítva)

Az optika vagy fénytan a fizikának a fény és általában az elektromágneses sugárzás terjedésével foglalkozó tudományága. A fény tulajdonságait, a fényjelenségeket – fénytörés, fényvisszaverődés, visszatükrözés – vizsgálja.

Az optika szó a görög optikosz (ὀπτικός = látás) szóból származik.[1]

Részterületei

[szerkesztés]

Színkép vagy spektrum

[szerkesztés]

A színeket a fény frekvenciája határozza meg. A különböző színeknek megfelelő hullámhosszak a fázissebesség és a frekvencia értékének a hányadosa.

Színkép vagy spektrum valamely fényforrástól kibocsátott fény hullámhossz szerinti felbontásánál a színekhez tartozó intenzitás frekvenciára való eloszlását leíró függvény által adható meg, illetve a fényspektrográfok által a hullámhossz szerint felbontással a térben.

Emissziós színkép

[szerkesztés]

A gerjesztett atomi vagy molekuláris rendszer által kibocsátott elektromágneses hullámok hullámhossz szerinti rendszere.

Folytonos színkép

[szerkesztés]

Olyan emissziós színkép, amelynek az intenzitása a frekvencia folytonos függvénye, és széles tartományban különbözik nullától.

Fényforrások

[szerkesztés]

Meg kell említenünk a fényforrásokat is, mert fényforrás nélkül nincs fény. Két fajta fényforrást különböztetünk meg:

  1. az elsődleges
  2. a másodlagos fényforrásokat.

Elsődleges fényforrás

[szerkesztés]

Elsődleges (valódi) fényforrásnak tekintjük azokat a tárgyakat, amelyek fényt bocsátanak ki. Elsődleges fényforrások: a Nap, a csillagok, a gyertya lángja, a lámpa stb.

Másodlagos fényforrások

[szerkesztés]

Minden test, ami csak a rá sugárzott és róla visszaverődő fény miatt látható azt másodlagos fényforrásnak nevezzük.

Ez alapján vehetjük úgy is, hogy minden test másodlagos fényforrás, mint például az asztal, tábla, ember stb.

Fényjelenségek

[szerkesztés]

Ha a fény két eltérő optikai sűrűségű közeg határára érkezik, akkor egy része visszaverődik, másik része pedig belép az új közegbe. Az új közegben haladó fénysugár általában megtörik. A közegek és a határfelület tulajdonságaitól, valamint a beesés szögétől függ, hogy a fényvisszaverődés vagy a fénytörés az erőteljesebb.

A Huygens–Fresnel-elv

[szerkesztés]
Hullámtörés a Huygens-elv alapján

Christiaan Huygens holland fizikus és csillagász (1629–1695) dolgozta ki az optikai rendszerek elemzésének hasznos módszerét.

A hullámfront minden pontja elemi gömbhullámok kiindulópontja. Az elemi hullámok a fény sebességével terjednek. Egy későbbi „t” időpontban a hullámfront új helyzetét az elemi hullámok interferenciájának burkolója adja meg.

(Megjegyzés: A hátrafele terjedő elemi hullámok az interferencia miatt kioltódnak.)

Fényvisszaverődés

[szerkesztés]

Hogyha a közegek és a határfelület tulajdonságai úgy hozzák, hogy a visszaverődés erőteljesebb, a jelenséget fényvisszaverődésnek nevezzük.

Teljes visszaverődés (totálreflexió)

[szerkesztés]
Teljes visszaverődés

Ha egy fénysugár az optikailag sűrűbb közeg felől a ritkább közeg felé halad, akkor a határfelületen nem törik meg, hanem azon – mint tökéletes tükrön – visszaverődik. Ilyenkor teljes fényvisszaverődésről vagy más néven totális reflexióról beszélünk, mivel a határfelület a ráeső fény 100%-át visszaveri. A határszöget a törési törvényből könnyedén meghatározhatjuk:

ebből:

Brewster törvénye

[szerkesztés]

A visszavert sugár teljesen poláros lesz, ha a visszavert, valamint a közegbe behatoló megtört sugár egymásra merőleges. A teljes polarizációhoz tartozó beesési szög és a törésmutató kapcsolata:

Kísérlet

[szerkesztés]
Fényvisszaverődés sík felületről

Hogy a törvényt ki tudjuk mondani, egy kísérletet kell elvégeznünk, amihez optikai korongot használunk. Az optikai vagy Hartl-korong három részből áll:

  • beosztásos korong
  • szűrő, ami kiszűri a nem megfelelő irányba haladó fénysugarakat
  • tartószerkezet, amire tükröket, illetve lencséket rakhatunk

Jelen esetben a tartószerkezetre egy síktükröt raktunk. A képen látszik, hogy merre halad a fénysugár, és elvileg azt látjuk, ami a mellékelt képen látható.

Törvény

[szerkesztés]

A törvény meghatározásához értelmeznünk kell a képet. Az alábbi elnevezéseket használjuk:

  • beeső fénysugár (s): a felülethez tartó fénysugár
  • visszavert fénysugár (s’): a felülettől távolodó fénysugár
  • beesési pont (O): ahol a beeső fénysugár a felületet éri
  • beesési merőleges (n): a beesési pontban a felületre állított merőleges
  • beesési szög (α): a beeső fénysugárnak a beesési merőlegessel bezárt szöge
  • visszaverődési szög (β=α’): a visszavert fénysugárnak a beesési merőlegessel bezárt szöge

A kísérletből megállapíthatjuk a törvényt:

  1. A beeső fénysugár, a beesési merőleges és a visszavert fénysugár egy síkban van.
  2. A visszaverődési szög egyenlő a beesési szöggel.

Ezt Eukleidész Kr. e. 300 körül már bebizonyította.

Fénytörés

[szerkesztés]
Fénytörés
Fénytörés

Ha egy üvegpohárba vizet öntünk, s rajta átnézve vizsgáljuk a hozzá közel lévő tárgyakat, eltorzult képet látunk. A vízbe helyezett szívószál például megtörtnek látszik, pedig ha kivesszük a vízből, látható, hogy változatlan az alakja. Nem a szívószál törik meg, hanem a fény, amely a vízből érkezik a szemünkbe.

Ha a fénysugár eltérő fénytani sűrűségű anyagok határán átlép, iránya megváltozik. A víz és a levegő határán mindig megtörik a fény, kivéve, ha éppen merőlegesen esik a vízfelületre.

A fény fázissebességének nagysága

[szerkesztés]

Vákuumban:

Szigetelőben:

(ugyanis )

A közeg abszolút törésmutatója

[szerkesztés]

Diszperzió (színszórás)

[szerkesztés]
A prizma fénytörése az eltérő hullámhosszok miatt alakul ki

frekvenciafüggése miatt különböző hullámhosszú fénysugarak ugyanabban a közegben különböző sebességgel terjednek. Az új közegben a fényhullámok különböző frekvenciájú komponensei különböző mértékben térnek el a becslési irányhoz képest, azaz szóródnak. Emiatt bontja színeire a különböző frekvenciájú (színű) fények keverékét a prizma.

Relatív törésmutató

[szerkesztés]

A második közeg első közegre viszonyított relatív törésmutatója:

Az első közeg optikailag akkor sűrűbb a második közegnél, ha , ellenkező esetben a közeg optikailag ritkább. (Az optikai sűrűség nem azonos a mechanikai sűrűséggel.)

Snellius–Descartes fénytörési törvénye

[szerkesztés]

Ugyanazon közegben a beesési és törési szög szinuszának aránya állandó, és egyenlő az első, illetve második közegben mért terjedési sebességek hányadosával.

Az beesési szög növelésével a fény energiájának egyre kisebb hányada jut be az új közegbe.

Optikai eszközök

[szerkesztés]
Commons:Category:Optics
A Wikimédia Commons tartalmaz Optika témájú médiaállományokat.

Jegyzetek

[szerkesztés]
  1. Fülöp József: Rövid kémiai értelmező és etimológiai szótár. Celldömölk: Pauz–Westermann Könyvkiadó Kft. 1998. 107. o. ISBN 963 8334 96 7  

Források

[szerkesztés]
  • Budó Ágoston: Kísérleti fizika III. Nemzeti Tankönyvkiadó (1994) ISBN 963-18-5969-X
  • Allen Nussbaum; Richard A. Phillips: Modern optika. Műszaki Könyvkiadó (1982) ISBN 963 10 3864 5
  • Csákány Antal; Flórik György; Gnädig Péter; Holics László; Juhász András; Sükösd Csaba; Tasnádi Péter. Fizika. Akadémia Kiadó (2009). ISBN 978 963 05 8487 6 

További információk

[szerkesztés]

Kapcsolódó szócikkek

[szerkesztés]