Agoh–Giuga-sejtés
A számelmélet területén az Agoh–Giuga-sejtés a prímszámokat és a Bk Bernoulli-számokat összekötő sejtés, ami szerint p akkor és csak akkor prímszám, ha
A sejtés névadói Takashi Agoh és Giuseppe Giuga.
Ekvivalens megfogalmazás
[szerkesztés]A sejtés fenti megfogalmazása Takashi Agohtól származik (1990); a Giuseppe Giuga által 1950-ben megadott változata úgy szól, hogy p akkor prím, ha
ami más alakban:
Triviálisan igazolható, hogy a második egyenlőség fennállásának elégséges feltétele, ha p prím, hiszen ha p prímszám, a kis Fermat-tétel kimondja, hogy:
minden értéke, amiből következik a második egyenlőség, hiszen
Állapot
[szerkesztés]Az állítás azért sejtés és nem tétel, mert ugyan a p prím volta az egyenlőség fennállásának elégséges, de nem biztos, hogy szükséges feltétele (tehát létezhet olyan n összetett szám, ami kielégíti a képletet). Megmutatták, hogy ha létezik olyan n összetett szám, ami kielégíti a képletet, akkor az egyszerre Carmichael-szám és Giuga-szám, ami legalább 13 800 jegyű (Borwein, Borwein, Borwein, Girgensohn 1996).
A Wilson-tétellel való kapcsolata
[szerkesztés]Az Agoh–Giuga-sejtés hasonlóságot mutat az igaznak bizonyult Wilson-tétellel. A Wilson-tétel kimondja, hogy a p szám akkor és csak akkor prím, ha
ami a következő alakban is felírható:
Jegyzetek
[szerkesztés]- Agoh, Takashi (1995). „On Giuga's conjecture”. Manuscripta Mathematica 87, 501–510. o. DOI:10.1007/bf02570490.
- (1996) „Giuga's Conjecture on Primality”. American Mathematical Monthly 103, 40–50. o. [2005. május 31-i dátummal az eredetiből archiválva]. DOI:10.2307/2975213. (Hozzáférés: 2005. május 31.)
- Giuga, Giuseppe (1951). „Su una presumibile proprietà caratteristica dei numeri primi” (italian nyelven). Ist.Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. 83, 511–518. o. ISSN 0375-9164.