Ugrás a tartalomhoz

Variancia

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A variancia avagy szórásnégyzet a valószínűségszámításban egy valószínűségi változó eloszlását jellemző szóródási mérőszám.[1] A szórásnégyzet megmutatja, hogy egy valószínűségi változó milyen mértékben szóródik a várható érték (középérték) körül. A szórásnégyzet a valószínűségi változó második centrális momentuma, gyakran használják ezt a paramétert a sokféle eloszlás megkülönböztetésére, valamint elméleti számításoknál.

A szórást és az abszolút eltérést egyaránt használják eloszlások jellemzésére. A szórás jobban jellemző, mint az abszolút eltérés, valamint együtt a szórásnégyzettel és a kovarianciával alkalmazzák az elméleti statisztikában. Az abszolút eltérés robusztusabb és kevésbé érzékeny a nagy eltérésekre, melyek mérési anomáliákból származnak.

A szórásnégyzet a valószínűségi változó változásainak a mértéke, tekintetbe véve az összes lehetséges értéket és annak valószínűségeit.

Definíció

[szerkesztés]

Ha egy X valószínűségi változó várható értéke (középértéke) μ = E[X], akkor az X szórásnégyzete az X saját magával vett kovarianciája:

Azaz a szórásnégyzet a változó és a várható értéke közötti különbség négyzetének várható értéke. A kovariancia megfelelő kifejezéséből kiterjesztve:

A leggyakrabban használt levezetés a várható értékből:

Példa

[szerkesztés]

Tekintsünk egy hatoldalú szabályos dobókockát. A dobás után a várható érték:

A várható abszolút eltérés (az azonosan valószínű abszolút eltérések várható értéke a középértéktől):

A várható négyzetes eltérés, a szórásnégyzet:

Folytonos valószínűségi változó esete

[szerkesztés]

Ha X egy folytonos valószínűségi változó f(x) sűrűségfüggvénnyel, akkor a szórásnégyzet egyenlő a második centrális momentummal:

ahol , a várható érték,

Az integrál határozott integrál. Ha a folytonos eloszlásnak nincs várható értéke, mint a Cauchy-eloszlás esetében, akkor szórásnégyzete sincs. Több más eloszlásnak sincs szórásnégyzete, ha nem létezik várható értéke.

Diszkrét valószínűségi változó esete

[szerkesztés]

Ha X egy diszkrét valószínűségi változó, tömegfüggvénnyel, akkor

ahol , a várható érték:

.

Exponenciális eloszlás

[szerkesztés]

Az exponenciális eloszlás paraméterrel, egy folytonos eloszlás tartományban, a sűrűségfüggvénye:

a várható érték: , és így a szórásnégyzet:

σ2 = μ2.

Főbb tulajdonságok

[szerkesztés]

A szórásnégyzet nem lehet negatív:

Egy állandó változó szórásnégyzete zéró, és ha a szórásnégyzet zéró, akkor 1 valószínűséggel állandó a változó:

A szórásnégyzet invariáns a helyparaméter változásaira, ha egy állandót adunk hozzá a változóhoz, a szórásnégyzet nem változik:

Ha a változót megszorozzuk egy konstanssal, a szórásnégyzet a konstans négyzetével változik.

Irodalom

[szerkesztés]
  • Goodman, Leo A: On the exact variance of products. (hely nélkül): Journal of the American Statistical Association. 1960. 708–713. o. ISBN 978-963-279-026-8  

Kapcsolódó szócikkek

[szerkesztés]

Jegyzetek

[szerkesztés]
  1. Montgomery, D. C. and Runger, G. C. (1994) Applied statistics and probability for engineers, page 201. John Wiley & Sons New York