A vektoranalízis főbb azonosságai az alábbiak.
Háromdimenziós Descartes-koordinátarendszerben egy
f
(
x
,
y
,
z
)
{\displaystyle f(x,y,z)}
függvény gradiense az alábbiak szerint adható meg:
grad
(
f
)
=
∇
f
=
∂
f
∂
x
i
+
∂
f
∂
y
j
+
∂
f
∂
z
k
{\displaystyle \operatorname {grad} (f)=\nabla f={\frac {\partial f}{\partial x}}\mathbf {i} +{\frac {\partial f}{\partial y}}\mathbf {j} +{\frac {\partial f}{\partial z}}\mathbf {k} }
,
ahol i , j , k a szokásos bázisvektorok,
∇
{\displaystyle \nabla }
pedig a nabla operátor .
Egy n-edrendű
A
{\displaystyle \mathbf {A} }
tenzormező gradiense általános alakban az alábbiak szerint írható fel:
grad
(
A
)
=
∇
A
{\displaystyle \operatorname {grad} (\mathbf {A} )=\nabla \mathbf {A} }
,
a gradiens mező rendje pedig n + 1 . Speciális esetben ha a tenzormező rendja 0, azaz egy
ψ
{\displaystyle \psi }
skalármezőről van szó, akkor ennek gradiense a
grad
(
ψ
)
=
∇
ψ
{\displaystyle \operatorname {grad} (\psi )=\nabla \psi }
vektormező.
Háromdimenziós Descartes-koordinátarendszerben egy folytonosan differenciálható
F
=
F
x
i
+
F
y
j
+
F
z
k
{\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} }
vektormező divergenciája az alábbi skalárértékű kifejezéssel írható fel:
div
F
=
∇
⋅
F
=
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
⋅
(
F
x
,
F
y
,
F
z
)
=
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
{\displaystyle \operatorname {div} \,\mathbf {F} =\nabla \cdot \mathbf {F} =\left({\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}}\right)\cdot (F_{x},F_{y},F_{z})={\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}}
,
ahol
∇
{\displaystyle \nabla }
a nabla operátor. Egy
n
≠
0
{\displaystyle n\neq 0}
rendű
A
{\displaystyle \mathbf {A} }
tenzormező divergenciája általánosan
div
(
A
)
=
∇
⋅
A
{\displaystyle \operatorname {div} (\mathbf {A} )=\nabla \cdot \mathbf {A} }
,
amelynek rendje n − 1 . A tenzormező divergenciája felírható úgy is, hogy a tenzormezőt vektoriális szorzatok összegére bontjuk. Ennek megfelelően fennál az alábbi összefüggés:
∇
⋅
(
B
⊗
A
^
)
=
A
^
(
∇
⋅
B
)
+
(
B
⋅
∇
)
A
^
{\displaystyle \nabla \cdot (\mathbf {B} \otimes {\hat {\mathbf {A} }})={\hat {\mathbf {A} }}(\nabla \cdot \mathbf {B} )+(\mathbf {B} \cdot \nabla ){\hat {\mathbf {A} }}}
,
ahol
B
⋅
∇
{\displaystyle \mathbf {B} \cdot \nabla }
irány menti derivált
B
{\displaystyle \mathbf {B} }
és
B
{\displaystyle \mathbf {B} }
hossza szorzatának irányában. Speciális esetben két vektorra az alábbi összefüggést írhatjuk:
∇
⋅
(
a
b
T
)
=
b
(
∇
⋅
a
)
+
(
a
⋅
∇
)
b
.
{\displaystyle \nabla \cdot \left(\mathbf {a} \mathbf {b} ^{\mathrm {T} }\right)=\mathbf {b} (\nabla \cdot \mathbf {a} )+(\mathbf {a} \cdot \nabla )\mathbf {b} \ .}
Háromdimenziós Descartes-koordinátarendszerben egy
F
=
F
x
i
+
F
y
j
+
F
z
k
{\displaystyle \mathbf {F} =F_{x}\mathbf {i} +F_{y}\mathbf {j} +F_{z}\mathbf {k} }
vektormező rotációja:
rot
F
=
∇
×
F
=
|
i
j
k
∂
∂
x
∂
∂
y
∂
∂
z
F
x
F
y
F
z
|
{\displaystyle \operatorname {rot} \mathbf {F} =\nabla \times \mathbf {F} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\\F_{x}&F_{y}&F_{z}\end{vmatrix}}}
, kifejtve
∇
×
F
=
(
∂
F
z
∂
y
−
∂
F
y
∂
z
)
i
+
(
∂
F
x
∂
z
−
∂
F
z
∂
x
)
j
+
(
∂
F
y
∂
x
−
∂
F
x
∂
y
)
k
{\displaystyle \nabla \times \mathbf {F} =\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right)\mathbf {i} +\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right)\mathbf {j} +\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right)\mathbf {k} }
,
ahol i , j , és k a szokásos bázisvektorok.
Egy háromdimenziós
v
{\displaystyle \mathbf {v} }
vektormező
∇
×
v
{\displaystyle \nabla \times \mathbf {v} }
rotációja is háromdimenziós.
A rotáció Einstein-jelöléssel az alábbi alakba írható:
ε
i
j
k
∂
v
k
∂
x
j
{\displaystyle \varepsilon ^{ijk}{\frac {\partial v_{k}}{\partial x^{j}}}}
,
ahol ε a Levi-Civita-szimbólum .
Háromdimenziós Descartes-koordinátarendszerben egy
f
(
x
,
y
,
z
)
{\displaystyle f(x,y,z)}
függvényre a Laplace-operátor az alábbiak szerint értelmezhető:
Δ
f
=
∇
2
f
=
(
∇
⋅
∇
)
f
=
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
+
∂
2
f
∂
z
2
.
{\displaystyle \Delta f=\nabla ^{2}f=(\nabla \cdot \nabla )f={\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}+{\frac {\partial ^{2}f}{\partial z^{2}}}.}
Egy
A
{\displaystyle \mathbf {A} }
tenzormezőből a Laplace operátor egy
A
{\displaystyle \mathbf {A} }
-val azonos rendű tenzormezőt képez az alábbiak szerint:
Δ
A
=
∇
2
A
=
(
∇
⋅
∇
)
A
{\displaystyle \Delta \mathbf {A} =\nabla ^{2}\mathbf {A} =(\nabla \cdot \nabla )\mathbf {A} }
.
A
∇
B
{\displaystyle \nabla _{\mathbf {\text{B}} }}
Feynman-jelöléssel olyan operátor adható meg, mely szorzatok csak egy tényezője szerinti gradienst jelent:[ 1] [ 2]
∇
B
(
A
⋅
B
)
=
A
×
(
∇
×
B
)
+
(
A
⋅
∇
)
B
{\displaystyle \nabla _{\mathbf {B} }\left(\mathbf {A\cdot B} \right)\ =\ \mathbf {A} \times \left(\nabla \times \mathbf {B} \right)\ +\ \left(\mathbf {A} \cdot \nabla \right)\mathbf {B} }
.
A tényező szerinti gradiens egy másik jelölése a Hestenes-féle pontjelölés, mellyel a fenti összefüggés így adható meg:
∇
˙
(
A
⋅
B
˙
)
=
A
×
(
∇
×
B
)
+
(
A
⋅
∇
)
B
{\displaystyle {\dot {\nabla }}\left(\mathbf {A} \cdot {\dot {\mathbf {B} }}\right)\ =\ \mathbf {A} \times \left(\nabla \times \mathbf {B} \right)\ +\ \left(\mathbf {A} \cdot \nabla \right)\mathbf {B} }
A jelölés értelmében az operátor csak a pontozott tényezőre hat, a többi tényező állandónak tekinthető.[ 3]
A magyar oktatási gyakorlatban egyaránt elterjedt az operátorok névvel, illetve nabla operátorral való jelölése, ezért az alábbi szakaszokban az összefüggéseket mindkét alakban láthatjuk.
A
ψ
{\displaystyle \psi }
és
ϕ
{\displaystyle \phi }
skalármezők,
A
{\displaystyle \mathbf {A} }
és
B
{\displaystyle \mathbf {B} }
vektormezők, és Descartes-koordinátarendszerben értelmezett
f
{\displaystyle f}
és
g
{\displaystyle g}
függvények esetén az alábbi alapösszefüggések írhatók fel.
A gradiens, a divergencia és a rotáció disztributivitása[ szerkesztés ]
grad
(
ψ
+
ϕ
)
=
grad
ψ
+
grad
ϕ
ill.
∇
(
ψ
+
ϕ
)
=
∇
ψ
+
∇
ϕ
{\displaystyle \operatorname {grad} (\psi +\phi )=\operatorname {grad} \psi +\operatorname {grad} \phi \quad {\text{ill.}}\quad \nabla (\psi +\phi )=\nabla \psi +\nabla \phi }
div
(
A
+
B
)
=
div
A
+
div
B
ill.
∇
⋅
(
A
+
B
)
=
∇
⋅
A
+
∇
⋅
B
{\displaystyle \operatorname {div} (\mathbf {A} +\mathbf {B} )=\operatorname {div} \mathbf {A} +\operatorname {div} \mathbf {B} \quad {\text{ill.}}\quad \nabla \cdot (\mathbf {A} +\mathbf {B} )=\nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} }
rot
(
A
+
B
)
=
rot
A
+
rot
B
ill.
∇
×
(
A
+
B
)
=
∇
×
A
+
∇
×
B
{\displaystyle \operatorname {rot} (\mathbf {A} +\mathbf {B} )=\operatorname {rot} \mathbf {A} +\operatorname {rot} \mathbf {B} \quad {\text{ill.}}\quad \nabla \times (\mathbf {A} +\mathbf {B} )=\nabla \times \mathbf {A} +\nabla \times \mathbf {B} }
grad
(
ϕ
ψ
)
=
ϕ
grad
ψ
+
ψ
grad
ϕ
ill.
∇
(
ψ
ϕ
)
=
ϕ
∇
ψ
+
ψ
∇
ϕ
{\displaystyle \operatorname {grad} (\phi \psi )=\phi \operatorname {grad} \psi +\psi \operatorname {grad} \phi \quad {\text{ill.}}\quad \nabla (\psi \,\phi )=\phi \,\nabla \psi +\psi \,\nabla \phi }
grad
(
ψ
A
)
=
(
grad
ψ
)
⊗
A
+
ψ
div
A
ill.
∇
(
ψ
A
)
=
∇
ψ
⊗
A
+
ψ
∇
A
{\displaystyle \operatorname {grad} (\psi \mathbf {A} )=(\operatorname {grad} \psi )\otimes \mathbf {A} +\psi \operatorname {div} \mathbf {A} \quad {\text{ill.}}\quad \nabla (\psi \mathbf {A} )=\nabla \psi \otimes \mathbf {A} \ +\ \psi \ \nabla \mathbf {A} \ }
(
ψ
A
{\displaystyle \psi \mathbf {A} }
tenzormező első rendű gradiense)
div
(
ψ
A
)
=
ψ
div
A
+
A
grad
ψ
ill.
∇
⋅
(
ψ
A
)
=
ψ
(
∇
⋅
A
)
+
A
⋅
(
∇
ψ
)
{\displaystyle \operatorname {div} (\psi \mathbf {A} )=\psi \operatorname {div} \mathbf {A} +\mathbf {A} \operatorname {grad} \psi \quad {\text{ill.}}\quad \nabla \cdot (\psi \mathbf {A} )=\psi \ (\nabla \cdot \mathbf {A} )\ +\ \mathbf {A} \cdot (\nabla \psi )}
rot
(
ψ
A
)
=
ψ
rot
A
+
(
grad
ψ
)
×
A
ill.
∇
×
(
ψ
A
)
=
ψ
(
∇
×
A
)
+
(
∇
ψ
)
×
A
{\displaystyle \operatorname {rot} (\psi \mathbf {A} )=\psi \operatorname {rot} \mathbf {A} +(\operatorname {grad} \psi )\times \mathbf {A} \quad {\text{ill.}}\quad \nabla \times (\psi \mathbf {A} )=\psi \ (\nabla \times \mathbf {A} )\ +\ (\nabla \psi )\times \mathbf {A} }
[forrás? ]
grad
(
f
g
)
=
g
grad
f
−
(
grad
g
)
f
g
2
ill.
∇
(
f
g
)
=
g
∇
f
−
(
∇
g
)
f
g
2
{\displaystyle \operatorname {grad} \left({\frac {f}{g}}\right)={\frac {g\operatorname {grad} f-(\operatorname {grad} g)f}{g^{2}}}\quad {\text{ill.}}\quad \nabla \left({\frac {f}{g}}\right)={\frac {g\nabla f-(\nabla g)f}{g^{2}}}}
div
(
A
g
)
=
g
div
A
−
(
grad
g
)
A
g
2
ill.
∇
⋅
(
A
g
)
=
g
∇
⋅
A
−
(
∇
g
)
⋅
A
g
2
{\displaystyle \operatorname {div} \left({\frac {\mathbf {A} }{g}}\right)={\frac {g\operatorname {div} \mathbf {A} -(\operatorname {grad} g)\mathbf {A} }{g^{2}}}\quad {\text{ill.}}\quad \nabla \cdot \left({\frac {\mathbf {A} }{g}}\right)={\frac {g\nabla \cdot \mathbf {A} -(\nabla g)\cdot \mathbf {A} }{g^{2}}}}
rot
(
A
g
)
=
g
rot
A
−
(
grad
g
)
×
A
g
2
ill.
∇
×
(
A
g
)
=
g
∇
×
A
−
(
∇
g
)
×
A
g
2
{\displaystyle \operatorname {rot} \left({\frac {\mathbf {A} }{g}}\right)={\frac {g\operatorname {rot} \mathbf {A} -(\operatorname {grad} g)\times \mathbf {A} }{g^{2}}}\quad {\text{ill.}}\quad \nabla \times \left({\frac {\mathbf {A} }{g}}\right)={\frac {g\nabla \times \mathbf {A} -(\nabla g)\times \mathbf {A} }{g^{2}}}}
∇
(
f
∘
g
)
=
(
f
′
∘
g
)
∇
g
{\displaystyle \nabla (f\circ g)=(f'\circ g)\nabla g}
∇
(
f
∘
A
)
=
(
∇
f
∘
A
)
∇
A
{\displaystyle \nabla (f\circ \mathbf {A} )=(\nabla f\circ \mathbf {A} )\nabla \mathbf {A} }
∇
⋅
(
A
∘
f
)
=
(
A
′
∘
f
)
⋅
∇
f
{\displaystyle \nabla \cdot (\mathbf {A} \circ f)=(\mathbf {A} '\circ f)\cdot \nabla f}
∇
×
(
A
∘
f
)
=
−
(
A
′
∘
f
)
×
∇
f
{\displaystyle \nabla \times (\mathbf {A} \circ f)=-(\mathbf {A} '\circ f)\times \nabla f}
∇
(
A
⋅
B
)
=
(
A
⋅
∇
)
B
+
(
B
⋅
∇
)
A
+
A
×
(
∇
×
B
)
+
B
×
(
∇
×
A
)
=
J
A
T
B
+
J
B
T
A
=
∇
A
⋅
B
+
∇
B
⋅
A
.
{\displaystyle {\begin{aligned}\nabla (\mathbf {A} \cdot \mathbf {B} )&=(\mathbf {A} \cdot \nabla )\mathbf {B} +(\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {B} )+\mathbf {B} \times (\nabla \times \mathbf {A} )\\&=\mathbf {J} _{\mathbf {A} }^{\mathrm {T} }\mathbf {B} +\mathbf {J} _{\mathbf {B} }^{\mathrm {T} }\mathbf {A} \\&=\nabla \mathbf {A} \cdot \mathbf {B} +\nabla \mathbf {B} \cdot \mathbf {A} \ .\end{aligned}}}
ahol J A jelöli A Jacobi-determinánsát .[ 4]
A speciális A = B esetben
1
2
∇
(
A
⋅
A
)
=
(
A
⋅
∇
)
A
+
A
×
(
∇
×
A
)
=
J
A
T
A
=
∇
A
⋅
A
.
{\displaystyle {\begin{aligned}{\frac {1}{2}}\nabla \left(\mathbf {A} \cdot \mathbf {A} \right)&=(\mathbf {A} \cdot \nabla )\mathbf {A} +\mathbf {A} \times (\nabla \times \mathbf {A} )\\&=\mathbf {J} _{\mathbf {A} }^{\mathrm {T} }\mathbf {A} \\&=\nabla \mathbf {A} \cdot \mathbf {A} \ .\end{aligned}}}
∇
⋅
(
A
×
B
)
=
(
∇
×
A
)
⋅
B
−
A
⋅
(
∇
×
B
)
{\displaystyle \nabla \cdot (\mathbf {A} \times \mathbf {B} )\ =\ (\nabla \times \mathbf {A} )\cdot \mathbf {B} -\mathbf {A} \cdot (\nabla \times \mathbf {B} )}
∇
×
(
A
×
B
)
=
A
(
∇
⋅
B
)
−
B
(
∇
⋅
A
)
+
(
B
⋅
∇
)
A
−
(
A
⋅
∇
)
B
=
(
∇
⋅
B
+
B
⋅
∇
)
A
−
(
∇
⋅
A
+
A
⋅
∇
)
B
=
∇
⋅
(
B
A
T
)
−
∇
⋅
(
A
B
T
)
=
∇
⋅
(
B
A
T
−
A
B
T
)
{\displaystyle {\begin{aligned}\nabla \times (\mathbf {A} \times \mathbf {B} )&\ =\ \mathbf {A} \ (\nabla \cdot \mathbf {B} )-\mathbf {B} \ (\nabla \cdot \mathbf {A} )+(\mathbf {B} \cdot \nabla )\mathbf {A} -(\mathbf {A} \cdot \nabla )\mathbf {B} \\&\ =\ (\nabla \cdot \mathbf {B} +\mathbf {B} \cdot \nabla )\mathbf {A} -(\nabla \cdot \mathbf {A} +\mathbf {A} \cdot \nabla )\mathbf {B} \\&\ =\ \nabla \cdot (\mathbf {B} \mathbf {A} ^{\mathrm {T} })-\nabla \cdot (\mathbf {A} \mathbf {B} ^{\mathrm {T} })\\&\ =\ \nabla \cdot (\mathbf {B} \mathbf {A} ^{\mathrm {T} }-\mathbf {A} \mathbf {B} ^{\mathrm {T} })\end{aligned}}}
The curl of the gradient of any continuously twice-differentiable scalar field
ϕ
{\displaystyle \ \phi }
is always the zero vector :
rot
grad
ϕ
=
0
,
ill.
∇
×
(
∇
ϕ
)
=
0
{\displaystyle \operatorname {rot} \operatorname {grad} \phi =0,\quad {\text{ill.}}\quad \nabla \times (\nabla \phi )=\mathbf {0} }
The divergence of the curl of any vector field A is always zero:
div
rot
A
=
0
,
ill.
∇
⋅
(
∇
×
A
)
=
0
{\displaystyle \operatorname {div} \operatorname {rot} \mathbf {A} =0,\quad {\text{ill.}}\quad \nabla \cdot (\nabla \times \mathbf {A} )=0}
A skalármezőre ható Laplace-operátor a definíciójából következően felfogható a mező gradiensének divergenciájaként. Skalármezőre ható Laplace-operátor skalármezőt eredményez.
∇
2
ψ
=
∇
⋅
(
∇
ψ
)
{\displaystyle \nabla ^{2}\psi =\nabla \cdot (\nabla \psi )}
.
∇
×
(
∇
×
A
)
=
∇
(
∇
⋅
A
)
−
∇
2
A
{\displaystyle \nabla \times \left(\nabla \times \mathbf {A} \right)=\nabla (\nabla \cdot \mathbf {A} )-\nabla ^{2}\mathbf {A} }
Here,∇2 is the vector Laplacian operating on the vector field A .
Elemi Elemi összeadási és szorzási azonosságok
A
+
B
=
B
+
A
{\displaystyle \mathbf {A} +\mathbf {B} =\mathbf {B} +\mathbf {A} }
A
⋅
B
=
B
⋅
A
{\displaystyle \mathbf {A} \cdot \mathbf {B} =\mathbf {B} \cdot \mathbf {A} }
A
×
B
=
−
B
×
A
{\displaystyle \mathbf {A} \times \mathbf {B} =\mathbf {-B} \times \mathbf {A} }
(
A
+
B
)
⋅
C
=
A
⋅
C
+
B
⋅
C
{\displaystyle \left(\mathbf {A} +\mathbf {B} \right)\cdot \mathbf {C} =\mathbf {A} \cdot \mathbf {C} +\mathbf {B} \cdot \mathbf {C} }
(
A
+
B
)
×
C
=
A
×
C
+
B
×
C
{\displaystyle \left(\mathbf {A} +\mathbf {B} \right)\times \mathbf {C} =\mathbf {A} \times \mathbf {C} +\mathbf {B} \times \mathbf {C} }
A
⋅
(
B
×
C
)
=
B
⋅
(
C
×
A
)
=
C
⋅
(
A
×
B
)
{\displaystyle \mathbf {A} \cdot \left(\mathbf {B} \times \mathbf {C} \right)=\mathbf {B} \cdot \left(\mathbf {C} \times \mathbf {A} \right)=\mathbf {C} \cdot \left(\mathbf {A} \times \mathbf {B} \right)}
A
×
(
B
×
C
)
=
(
A
⋅
C
)
B
−
(
A
⋅
B
)
C
{\displaystyle \mathbf {A} \times \left(\mathbf {B} \times \mathbf {C} \right)=\left(\mathbf {A} \cdot \mathbf {C} \right)\mathbf {B} -\left(\mathbf {A} \cdot \mathbf {B} \right)\mathbf {C} }
(
A
×
B
)
×
C
=
(
A
⋅
C
)
B
−
(
B
⋅
C
)
A
{\displaystyle \left(\mathbf {A} \times \mathbf {B} \right)\times \mathbf {C} =\left(\mathbf {A} \cdot \mathbf {C} \right)\mathbf {B} -\left(\mathbf {B} \cdot \mathbf {C} \right)\mathbf {A} }
A
×
(
B
×
C
)
=
(
A
×
B
)
×
C
+
B
×
(
A
×
C
)
{\displaystyle \mathbf {A} \times \left(\mathbf {B} \times \mathbf {C} \right)=\left(\mathbf {A} \times \mathbf {B} \right)\times \mathbf {C} \ +\ \mathbf {B} \times \left(\mathbf {A} \times \mathbf {C} \right)}
A
×
(
B
×
C
)
+
C
×
(
A
×
B
)
+
B
×
(
C
×
A
)
=
0
{\displaystyle \mathbf {A} \times \left(\mathbf {B} \times \mathbf {C} \right)\ +\ \mathbf {C} \times \left(\mathbf {A} \times \mathbf {B} \right)\ +\ \mathbf {B} \times \left(\mathbf {C} \times \mathbf {A} \right)=0}
(
A
×
B
)
⋅
(
C
×
D
)
=
(
A
⋅
C
)
(
B
⋅
D
)
−
(
B
⋅
C
)
(
A
⋅
D
)
{\displaystyle \left(\mathbf {A} \times \mathbf {B} \right)\cdot \left(\mathbf {C} \times \mathbf {D} \right)=\left(\mathbf {A} \cdot \mathbf {C} \right)\left(\mathbf {B} \cdot \mathbf {D} \right)-\left(\mathbf {B} \cdot \mathbf {C} \right)\left(\mathbf {A} \cdot \mathbf {D} \right)}
(
A
⋅
(
B
×
C
)
)
D
=
(
A
⋅
D
)
(
B
×
C
)
+
(
B
⋅
D
)
(
C
×
A
)
+
(
C
⋅
D
)
(
A
×
B
)
{\displaystyle \left(\mathbf {A} \cdot \left(\mathbf {B} \times \mathbf {C} \right)\right)\mathbf {D} =\left(\mathbf {A} \cdot \mathbf {D} \right)\left(\mathbf {B} \times \mathbf {C} \right)+\left(\mathbf {B} \cdot \mathbf {D} \right)\left(\mathbf {C} \times \mathbf {A} \right)+\left(\mathbf {C} \cdot \mathbf {D} \right)\left(\mathbf {A} \times \mathbf {B} \right)}
(
A
×
B
)
×
(
C
×
D
)
=
(
A
⋅
(
B
×
D
)
)
C
−
(
A
⋅
(
B
×
C
)
)
D
{\displaystyle \left(\mathbf {A} \times \mathbf {B} \right)\times \left(\mathbf {C} \times \mathbf {D} \right)=\left(\mathbf {A} \cdot \left(\mathbf {B} \times \mathbf {D} \right)\right)\mathbf {C} -\left(\mathbf {A} \cdot \left(\mathbf {B} \times \mathbf {C} \right)\right)\mathbf {D} }
Az összefüggés operátornévvel felírva
Az összefüggés nablával felírva
Megyjegyzés
Elsőrendű deriváltak
grad
(
ψ
+
ϕ
)
=
grad
ψ
+
grad
ϕ
{\displaystyle \operatorname {grad} (\psi +\phi )=\operatorname {grad} \psi +\operatorname {grad} \phi }
∇
(
ψ
+
ϕ
)
=
∇
ψ
+
∇
ϕ
{\displaystyle \nabla (\psi +\phi )=\nabla \psi +\nabla \phi }
grad
(
ψ
ϕ
)
=
ϕ
grad
ψ
+
ψ
grad
ϕ
{\displaystyle \operatorname {grad} (\psi \,\phi )=\phi \,\operatorname {grad} \psi +\psi \,\operatorname {grad} \phi }
∇
(
ψ
ϕ
)
=
ϕ
∇
ψ
+
ψ
∇
ϕ
{\displaystyle \nabla (\psi \,\phi )=\phi \,\nabla \psi +\psi \,\nabla \phi }
grad
(
ψ
A
)
=
grad
ψ
⊗
A
+
ψ
grad
A
{\displaystyle \operatorname {grad} (\psi \mathbf {A} )=\operatorname {grad} \psi \otimes \mathbf {A} \ +\ \psi \ \operatorname {grad} \mathbf {A} \ }
∇
(
ψ
A
)
=
∇
ψ
⊗
A
+
ψ
∇
A
{\displaystyle \nabla (\psi \mathbf {A} )=\nabla \psi \otimes \mathbf {A} \ +\ \psi \ \nabla \mathbf {A} \ }
∇
(
A
⋅
B
)
=
(
∇
A
)
⋅
B
+
A
⋅
(
∇
B
)
{\displaystyle \nabla \left(\mathbf {A} \cdot \mathbf {B} \right)=\left(\nabla \mathbf {A} \right)\cdot \mathbf {B} +\mathbf {A} \cdot \left(\nabla \mathbf {B} \right)}
div
(
A
+
B
)
=
div
A
+
div
B
{\displaystyle \operatorname {div} (\mathbf {A} +\mathbf {B} )\ =\ \operatorname {div} \mathbf {A} \,+\,\operatorname {div} \mathbf {B} }
∇
⋅
(
A
+
B
)
=
∇
⋅
A
+
∇
⋅
B
{\displaystyle \nabla \cdot (\mathbf {A} +\mathbf {B} )\ =\ \nabla \cdot \mathbf {A} \,+\,\nabla \cdot \mathbf {B} }
div
(
ψ
A
)
=
ψ
div
A
+
A
⋅
grad
ψ
{\displaystyle \operatorname {div} \left(\psi \mathbf {A} \right)\ =\ \psi \,\operatorname {div} \mathbf {A} \,+\,\mathbf {A} \cdot \operatorname {grad} \psi }
∇
⋅
(
ψ
A
)
=
ψ
∇
⋅
A
+
A
⋅
∇
ψ
{\displaystyle \nabla \cdot \left(\psi \mathbf {A} \right)\ =\ \psi \,\nabla \cdot \mathbf {A} \,+\,\mathbf {A} \cdot \nabla \psi }
div
(
A
×
B
)
=
B
⋅
(
rot
A
)
−
A
⋅
(
rot
B
)
{\displaystyle \operatorname {div} \left(\mathbf {A} \times \mathbf {B} \right)\ =\ \mathbf {B} \cdot (\operatorname {rot} \mathbf {A} )\,-\,\mathbf {A} \cdot (\operatorname {rot} \mathbf {B} )}
∇
⋅
(
A
×
B
)
=
B
⋅
(
∇
×
A
)
−
A
⋅
(
∇
×
B
)
{\displaystyle \nabla \cdot \left(\mathbf {A} \times \mathbf {B} \right)\ =\ \mathbf {B} \cdot (\nabla \times \mathbf {A} )\,-\,\mathbf {A} \cdot (\nabla \times \mathbf {B} )}
rot
(
A
+
B
)
=
rot
A
+
rot
B
{\displaystyle \operatorname {rot} (\mathbf {A} +\mathbf {B} )\ =\ \operatorname {rot} \mathbf {A} \,+\,\operatorname {rot} \mathbf {B} }
∇
×
(
A
+
B
)
=
∇
×
A
+
∇
×
B
{\displaystyle \nabla \times (\mathbf {A} +\mathbf {B} )\ =\ \nabla \times \mathbf {A} \,+\,\nabla \times \mathbf {B} }
rot
(
ψ
A
)
=
ψ
(
rot
A
)
+
grad
ψ
×
A
{\displaystyle \operatorname {rot} \left(\psi \mathbf {A} \right)\ =\ \psi \,(\operatorname {rot} \mathbf {A} )\,+\,\operatorname {grad} \psi \times \mathbf {A} }
∇
×
(
ψ
A
)
=
ψ
(
∇
×
A
)
+
∇
ψ
×
A
{\displaystyle \nabla \times \left(\psi \mathbf {A} \right)\ =\ \psi \,(\nabla \times \mathbf {A} )\,+\,\nabla \psi \times \mathbf {A} }
rot
(
ψ
grad
ϕ
)
=
grad
ψ
×
grad
ϕ
{\displaystyle \operatorname {rot} \left(\psi \operatorname {grad} \phi \right)\ =\operatorname {grad} \psi \times \operatorname {grad} \phi }
∇
×
(
ψ
∇
ϕ
)
=
∇
ψ
×
∇
ϕ
{\displaystyle \nabla \times \left(\psi \nabla \phi \right)\ =\nabla \psi \times \nabla \phi }
∇
×
(
A
×
B
)
=
A
(
∇
⋅
B
)
−
B
(
∇
⋅
A
)
+
(
B
⋅
∇
)
A
−
(
A
⋅
∇
)
B
{\displaystyle \nabla \times \left(\mathbf {A} \times \mathbf {B} \right)\ =\ \mathbf {A} \left(\nabla \cdot \mathbf {B} \right)\,-\,\mathbf {B} \left(\nabla \cdot \mathbf {A} \right)\,+\,\left(\mathbf {B} \cdot \nabla \right)\mathbf {A} \,-\,\left(\mathbf {A} \cdot \nabla \right)\mathbf {B} }
Másodrendű deriváltak
div
rot
A
=
0
{\displaystyle \operatorname {div} \operatorname {rot} \mathbf {A} =0}
∇
⋅
(
∇
×
A
)
=
0
{\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0}
rot
grad
ψ
=
0
{\displaystyle \operatorname {rot} \operatorname {grad} \psi =\mathbf {0} }
∇
×
(
∇
ψ
)
=
0
{\displaystyle \nabla \times (\nabla \psi )=\mathbf {0} }
div
grad
ψ
=
∇
2
ψ
=
Δ
ψ
{\displaystyle \operatorname {div} \operatorname {grad} \psi =\nabla ^{2}\psi =\Delta \psi }
∇
⋅
(
∇
ψ
)
=
∇
2
ψ
{\displaystyle \nabla \cdot (\nabla \psi )=\nabla ^{2}\psi }
skalár-Laplace
grad
div
A
−
rot
rot
A
=
∇
2
A
=
Δ
A
{\displaystyle \operatorname {grad} \operatorname {div} \mathbf {A} -\operatorname {rot} \operatorname {rot} \mathbf {A} =\nabla ^{2}\mathbf {A} =\Delta \mathbf {A} }
∇
(
∇
⋅
A
)
−
∇
×
(
∇
×
A
)
=
∇
2
A
{\displaystyle \nabla \left(\nabla \cdot \mathbf {A} \right)-\nabla \times \left(\nabla \times \mathbf {A} \right)=\nabla ^{2}\mathbf {A} }
vektor-Laplace
div
(
ϕ
grad
ψ
)
=
ϕ
Δ
ψ
+
grad
ϕ
⋅
grad
ψ
{\displaystyle \operatorname {div} (\phi \operatorname {grad} \psi )=\phi \Delta \psi +\operatorname {grad} \phi \cdot \operatorname {grad} \psi }
∇
⋅
(
ϕ
∇
ψ
)
=
ϕ
∇
2
ψ
+
∇
ϕ
⋅
∇
ψ
{\displaystyle \nabla \cdot (\phi \nabla \psi )=\phi \nabla ^{2}\psi +\nabla \phi \cdot \nabla \psi }
ψ
∇
2
ϕ
−
ϕ
∇
2
ψ
=
∇
⋅
(
ψ
∇
ϕ
−
ϕ
∇
ψ
)
{\displaystyle \psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi =\nabla \cdot \left(\psi \nabla \phi -\phi \nabla \psi \right)}
ψ
∇
2
ϕ
−
ϕ
∇
2
ψ
=
∇
⋅
(
ψ
∇
ϕ
−
ϕ
∇
ψ
)
{\displaystyle \psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi =\nabla \cdot \left(\psi \nabla \phi -\phi \nabla \psi \right)}
∇
2
(
ϕ
ψ
)
=
ϕ
∇
2
ψ
+
2
∇
ϕ
⋅
∇
ψ
+
ψ
∇
2
ϕ
{\displaystyle \nabla ^{2}(\phi \psi )=\phi \nabla ^{2}\psi +2\nabla \phi \cdot \nabla \psi +\psi \nabla ^{2}\phi }
∇
2
(
ϕ
ψ
)
=
ϕ
∇
2
ψ
+
2
∇
ϕ
⋅
∇
ψ
+
ψ
∇
2
ϕ
{\displaystyle \nabla ^{2}(\phi \psi )=\phi \nabla ^{2}\psi +2\nabla \phi \cdot \nabla \psi +\psi \nabla ^{2}\phi }
∇
2
(
ψ
A
)
=
A
∇
2
ψ
+
2
(
∇
ψ
⋅
∇
)
A
+
ψ
∇
2
A
{\displaystyle \nabla ^{2}(\psi \mathbf {A} )=\mathbf {A} \nabla ^{2}\psi +2(\nabla \psi \cdot \nabla )\mathbf {A} +\psi \nabla ^{2}\mathbf {A} }
∇
2
(
ψ
A
)
=
A
∇
2
ψ
+
2
(
∇
ψ
⋅
∇
)
A
+
ψ
∇
2
A
{\displaystyle \nabla ^{2}(\psi \mathbf {A} )=\mathbf {A} \nabla ^{2}\psi +2(\nabla \psi \cdot \nabla )\mathbf {A} +\psi \nabla ^{2}\mathbf {A} }
∇
2
(
A
⋅
B
)
=
A
⋅
∇
2
B
−
B
⋅
∇
2
A
+
2
∇
⋅
(
(
B
⋅
∇
)
A
+
B
×
∇
×
A
)
{\displaystyle \nabla ^{2}(\mathbf {A} \cdot \mathbf {B} )=\mathbf {A} \cdot \nabla ^{2}\mathbf {B} -\mathbf {B} \cdot \nabla ^{2}\mathbf {A} +2\nabla \cdot ((\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {B} \times \nabla \times \mathbf {A} )}
∇
2
(
A
⋅
B
)
=
A
⋅
∇
2
B
−
B
⋅
∇
2
A
+
2
∇
⋅
(
(
B
⋅
∇
)
A
+
B
×
∇
×
A
)
{\displaystyle \nabla ^{2}(\mathbf {A} \cdot \mathbf {B} )=\mathbf {A} \cdot \nabla ^{2}\mathbf {B} -\mathbf {B} \cdot \nabla ^{2}\mathbf {A} +2\nabla \cdot ((\mathbf {B} \cdot \nabla )\mathbf {A} +\mathbf {B} \times \nabla \times \mathbf {A} )}
Green-függvény-azonosság
Harmadrendű deriváltak
∇
2
(
∇
ψ
)
=
∇
(
∇
⋅
(
∇
ψ
)
)
=
∇
(
∇
2
ψ
)
{\displaystyle \nabla ^{2}(\nabla \psi )=\nabla (\nabla \cdot (\nabla \psi ))=\nabla (\nabla ^{2}\psi )}
∇
2
(
∇
⋅
A
)
=
∇
⋅
(
∇
(
∇
⋅
A
)
)
=
∇
⋅
(
∇
2
A
)
{\displaystyle \nabla ^{2}(\nabla \cdot \mathbf {A} )=\nabla \cdot (\nabla (\nabla \cdot \mathbf {A} ))=\nabla \cdot (\nabla ^{2}\mathbf {A} )}
∇
2
(
∇
×
A
)
=
−
∇
×
(
∇
×
(
∇
×
A
)
)
=
∇
×
(
∇
2
A
)
{\displaystyle \nabla ^{2}(\nabla \times \mathbf {A} )=-\nabla \times (\nabla \times (\nabla \times \mathbf {A} ))=\nabla \times (\nabla ^{2}\mathbf {A} )}
DCG chart: A simple chart depicting all rules pertaining to second derivatives. D, C, G, L and CC stand for divergence, curl, gradient, Laplacian and curl of curl, respectively. Arrows indicate existence of second derivatives. Blue circle in the middle represents curl of curl, whereas the other two red circles(dashed) mean that DD and GG do not exist.
Below, the curly symbol ∂ means "boundary of ".
In the following surface–volume integral theorems, V denotes a three-dimensional volume with a corresponding two-dimensional boundary S = ∂V (a closed surface ):
In the following curve–surface integral theorems, S denotes a 2d open surface with a corresponding 1d boundary C = ∂S (a closed curve ):
∮
∂
S
A
⋅
d
ℓ
=
∬
S
(
∇
×
A
)
⋅
d
S
{\displaystyle \oint _{\partial S}\mathbf {A} \cdot d{\boldsymbol {\ell }}=\iint _{S}\left(\nabla \times \mathbf {A} \right)\cdot d\mathbf {S} }
(Stokes' theorem )
∮
∂
S
ψ
d
ℓ
=
∬
S
(
n
^
×
∇
ψ
)
d
S
{\displaystyle \oint _{\partial S}\psi d{\boldsymbol {\ell }}=\iint _{S}\left({\hat {\mathbf {n} }}\times \nabla \psi \right)dS}
Integration around a closed curve in the clockwise sense is the negative of the same line integral in the counterclockwise sense (analogous to interchanging the limits in a definite integral ):
Sablon:Intorient
Ez a szócikk részben vagy egészben a Vector calculus identities című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Balanis, Constantine A.. Advanced Engineering Electromagnetics . ISBN 0-471-62194-3
Schey, H. M.. Div Grad Curl and all that: An informal text on vector calculus . W. W. Norton & Company (1997). ISBN 0-393-96997-5
Griffiths, David J.. Introduction to Electrodynamics . Prentice Hall (1999). ISBN 0-13-805326-X