Ugrás a tartalomhoz

Viviani-tétel

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából
Az s + u + t összeg a nagy háromszög magasságával egyenlő.

Viviani tétele szerint egy szabályos háromszög minden belső pontjának az oldalaktól való távolságösszege egyenlő a szabályos háromszög magasságával. Nevét felfedezője,[forrás?] Vincenzo Viviani olasz matematikus és fizikus után kapta.

Bizonyítása

[szerkesztés]

Legyen a háromszög oldalhossza a, és legyen egy tetszőleges P pont a háromszög belsejében. A csúcsokkal összekötve három háromszögre bontja a szabályos háromszöget, melyek összege a szabályos háromszög területe:

TABP + TBCP + TCAP = TABC

A T = m·a/2 képletet felhasználva (ahol m a magasság, a az alap hossza):

s·a/2 + u·a/2 + t·a/2 = m·a/2

a/2-vel való egyszerűsítés után:

s + u + t = m

Megfordítása

[szerkesztés]

Egy lehetséges megfordítás: ha egy háromszög belsejében az oldalaktól való távolságösszeg állandó, akkor a háromszög szabályos.

Általánosítások

[szerkesztés]

Lényegében ezzel a gondolatmenettel belátható szabályos tetraéderre az állítás, illetve négyszög esetén paralelogrammára.

Irodalom

[szerkesztés]

Források

[szerkesztés]