( φ → ψ ⟺ d e f ( ¬ φ ) ∨ ψ {\displaystyle \scriptstyle {\varphi \to \psi \iff _{def}(\lnot \varphi )\vee \psi }} ) ( A 1 ) φ ∨ φ → φ ( A 2 ) φ → φ ∨ ψ ( A 3 ) φ ∨ ψ → ψ ∨ φ ( A 4 ) ( φ → ψ ) → ( θ ∨ φ → θ ∨ ψ ) vegul ha minden k ∈ K ( t ) kifejezesre és x valtozojelre, ha a φ [ x / k ] helyettesites megengedett, ( A 5 ) φ [ x / k ] → ∃ x φ ( E 1 ) x = x ( E 2 ) x = y → y = x ( E 3 ) x = y ∧ y = z → x = z ( E 4 ) x 0 = y 0 ∧ ⋯ ∧ x n − 1 = y n − 1 → ( r ( x 0 , … , x n − 1 ) → r ( y 0 , … , y n − 1 ) ) ( E 5 ) x 0 = y 0 ∧ ⋯ ∧ x n − 1 = y n − 1 → f ( x 0 , … , x n − 1 ) → r ( y 0 , … , y n − 1 ) ( K 1 ) φ → ψ , φ | ψ ( K 2 ) φ → ψ | ( ∃ x φ ) → ψ {\displaystyle \scriptstyle {\begin{array}{cl}(A1)&\varphi \vee \varphi \to \varphi \\(A2)&\varphi \to \varphi \vee \psi \\(A3)&\varphi \vee \psi \to \psi \vee \varphi \\(A4)&(\varphi \to \psi )\to (\theta \vee \varphi \to \theta \vee \psi )\\&{\text{ vegul ha minden }}k\in K(t){\text{ kifejezesre és }}x{\text{ valtozojelre, ha a }}\varphi [x/k]{\text{ helyettesites megengedett,}}\\(A5)&\varphi [x/k]\to \exists x\varphi \\(E1)&x=x\\(E2)&x=y\to y=x\\(E3)&x=y\land y=z\to x=z\\(E4)&x_{0}=y_{0}\land \dots \land x_{n-1}=y_{n-1}\to (r(x_{0},\dots ,x_{n-1})\to r(y_{0},\dots ,y_{n-1}))\\(E5)&x_{0}=y_{0}\land \dots \land x_{n-1}=y_{n-1}\to f(x_{0},\dots ,x_{n-1})\to r(y_{0},\dots ,y_{n-1})\\(K1)&\varphi \to \psi ,\varphi |\psi \\(K2)&\varphi \to \psi |(\exists x\varphi )\to \psi \\\end{array}}}
( P C 1 ) ( ϕ → ( ψ → ϕ ) ) ( P C 2 ) ( ( ϕ → ( ψ → c h i ) ) → ( ( ϕ → ψ ) → ( ψ → χ ) ) ( P C 3 ) ( ( ¬ ϕ → ¬ ψ ) → ( ψ → ϕ ) ) ( P C 4 ) ( ∀ x ( ϕ → ψ ) → ( ϕ → ∀ x ψ ) ) , ha x nem fordul elo szabadon φ -ben. ( P C 5 ) ( ∀ x ϕ → ϕ ) , ha x nem fordul elo szabadon φ -ben. ( P C 6 ) ( ∀ x ϕ ( x ) → ϕ ( t ) ) feltéve, hogy a t terminus szabad x -re nezve ϕ ( x ) -ben. ( M P ) ϕ -bol és ( ϕ → ψ ) -bol kovetkezik ψ ( G ) ϕ -bol kovetkezik ∀ x ϕ ( E 1 ) E ( x , x ) ( E 2 ) E ( t , s ) → E ( f n ( u 1 , u 2 , … , t , … u n ) , f n ( u 1 , u 2 , … , s , … , u n ) ) ( E 3 ) E ( t , s ) → ( ϕ ( u 1 , u 2 , … , t , … u n ) → ϕ ( u 1 , u 2 , … , s , … , u n ) ) {\displaystyle \scriptstyle {\begin{array}{cl}(PC1)&(\phi \to (\psi \to \phi ))\\(PC2)&((\phi \to (\psi \to chi))\to ((\phi \to \psi )\to (\psi \to \chi ))\\(PC3)&((\lnot \phi \to \lnot \psi )\to (\psi \to \phi ))\\(PC4)&(\forall x(\phi \to \psi )\to (\phi \to \forall x\psi )){\text{, ha }}x{\text{ nem fordul elo szabadon }}\varphi {\text{-ben.}}\\(PC5)&(\forall x\phi \to \phi ){\text{, ha }}x{\text{ nem fordul elo szabadon }}\varphi {\text{-ben.}}\\(PC6)&(\forall x\phi (x)\to \phi (t)){\text{ feltéve, hogy a }}t{\text{ terminus szabad }}x{\text{-re nezve }}\phi (x){\text{-ben.}}\\(MP)&\phi {\text{-bol és }}(\phi \to \psi ){\text{-bol kovetkezik }}\psi \\(G)&\phi {\text{-bol kovetkezik }}\forall x\phi \\(E1)&E(x,x)\\(E2)&E(t,s)\to E(f^{n}(u_{1},u_{2},\dots ,t,\dots u_{n}),f^{n}(u_{1},u_{2},\dots ,s,\dots ,u_{n}))\\(E3)&E(t,s)\to (\phi (u_{1},u_{2},\dots ,t,\dots u_{n})\to \phi (u_{1},u_{2},\dots ,s,\dots ,u_{n}))\\\end{array}}}
( i ) α → β → α ( i i ) ( α → β → γ ) → ( α → β ) → α → γ ( i i i ) ( ¬ α → β ) → ( ¬ α → ¬ β ) → α ( i v ) ∀ x ( α → β ) → ( ∀ x α → ∀ x β ) ( v ) α → ∀ x α , ha x nem szabad α -ban ( v i ) ∀ x α → α ( y / t ) ( v i i ) ( t = t ) ( v i i i ) t 1 = t n + 1 → … t n = t 2 n → f ( t 1 , … , t n ) = f ( t n + 1 , … , t 2 n ) ( i x ) t 1 = t n + 1 → … t n = t 2 n → R ( t 1 , … , t n ) = f ( t n + 1 , … , t 2 n ) ( x ) az ( i ) − ( i x ) -ben foglalt semak osszes lehetséges altalanositasai, ahol egy α sema egy lehetseges altalanositasan vagy generalizaciojan ertjuk az ∀ x α semat, ahol x tetszoleges individuumvaltozo. ( M P ) α , α → β β {\displaystyle \scriptstyle {\begin{array}{cl}(i)&\alpha \to \beta \to \alpha \\(ii)&(\alpha \to \beta \to \gamma )\to (\alpha \to \beta )\to \alpha \to \gamma \\(iii)&(\lnot \alpha \to \beta )\to (\lnot \alpha \to \lnot \beta )\to \alpha \\(iv)&\forall x(\alpha \to \beta )\to (\forall x\alpha \to \forall x\beta )\\(v)&\alpha \to \forall x\alpha {\text{, ha }}x{\text{ nem szabad }}\alpha {\text{-ban}}\\(vi)&\forall x\alpha \to \alpha (y/t)\\(vii)&(t=t)\\(viii)&t_{1}=t_{n+1}\to \dots t_{n}=t_{2n}\to f(t_{1},\dots ,t_{n})=f(t_{n+1},\dots ,t_{2n})\\(ix)&t_{1}=t_{n+1}\to \dots t_{n}=t_{2n}\to R(t_{1},\dots ,t_{n})=f(t_{n+1},\dots ,t_{2n})\\(x)&{\text{az }}(i)-(ix){\text{-ben foglalt semak osszes lehetséges altalanositasai,}}\\&{\text{ ahol egy }}\alpha {\text{ sema egy lehetseges altalanositasan vagy generalizaciojan}}\\&{\text{ ertjuk az }}\forall x\alpha {\text{ semat, ahol }}x{\text{ tetszoleges individuumvaltozo.}}\\(MP)&{\frac {\alpha ,\alpha \to \beta }{\beta }}\\\end{array}}}
1. α → ( β → α ) 2. ( α → ( β → γ ) ) → ( ( α → β ) → ( α → γ ) ) 3. ( ¬ β → ¬ α ) → ( ¬ β → α ) → β 4. ∀ v i φ → φ v i [ t ] , ha a helyettesites megengedett 5. ( ∀ v i ( φ → ψ ) ) → φ → ∀ v i ψ ) , ha v i ∉ V ( φ ) 6. v i = v i ( i = 0 , 1 , . . . ) 7. ( v i = v j ) → ( v j = v i ) ( i = 0 , 1 , . . . ) 8. ( ( v i = v j ) ∧ ( v j = v k ) ) → ( v i = v k ) ( i , j , k = 0 , 1 , . . . ) 9. ( ( v i 1 = v j 1 ) ∧ ⋯ ∧ ( v i n = v j n ) ) → ( R ( v i 1 , … , v i n ) → R ( v j 1 , … , v j n ) ) 10. ( ( v i 1 = v j 1 ) ∧ ⋯ ∧ ( v i n = v j n ) ) → ( f ( v i 1 , … , v i n ) = f ( v j 1 , … , v j n ) ) ( M P ) α , α → β ⊢ β ( G E N ) ϕ ⊢ ∀ v i ϕ , ( i = 0 , 1 , . . . ) {\displaystyle \scriptstyle {\begin{array}{cl}1.&\alpha \to (\beta \to \alpha )\\2.&(\alpha \to (\beta \to \gamma ))\to ((\alpha \to \beta )\to (\alpha \to \gamma ))\\3.&(\lnot \beta \to \lnot \alpha )\to (\lnot \beta \to \alpha )\to \beta \\4.&\forall v_{i}\varphi \to \varphi _{v_{i}}[t]{\text{, ha a helyettesites megengedett}}\\5.&(\forall v_{i}(\varphi \to \psi ))\to \varphi \to \forall v_{i}\psi ){\text{, ha }}v_{i}\notin V(\varphi )\\6.&v_{i}=v_{i}\quad (i=0,1,...)\\7.&(v_{i}=v_{j})\to (v_{j}=v_{i})\quad (i=0,1,...)\\8.&((v_{i}=v_{j})\land (v_{j}=v_{k}))\to (v_{i}=v_{k})\quad (i,j,k=0,1,...)\\9.&((v_{i_{1}}=v_{j_{1}})\land \cdots \land (v_{i_{n}}=v_{j_{n}}))\to (R(v_{i_{1}},\dots ,v_{i_{n}})\to R(v_{j_{1}},\dots ,v_{j_{n}}))\\10.&((v_{i_{1}}=v_{j_{1}})\land \cdots \land (v_{i_{n}}=v_{j_{n}}))\to (f(v_{i_{1}},\dots ,v_{i_{n}})=f(v_{j_{1}},\dots ,v_{j_{n}}))\\(MP)&\alpha ,\alpha \to \beta \vdash \beta \\(GEN)&\phi \vdash \forall v_{i}\phi ,\quad (i=0,1,...)\\\end{array}}}
( B 1 ) A ⊃ ( B ⊃ A ) ( B 2 ) ( A ⊃ ( B ⊃ C ) ) ⊃ ( ( A ⊃ B ) ⊃ ( A ⊃ C ) ) ( B 3 ) ( ¬ A ⊃ B ) ⊃ ( ( ¬ A ⊃ ¬ B ) ⊃ A ) ( B 4 ) ∀ x A ⊃ [ A ( x ∥ t ) ] ( B 5 ) ( ∀ x ( A ⊃ B ) ⊃ ( ∀ x A ⊃ ∀ x B ) ) ( B 6 ) ( A ⊃ ( ∀ x ⋅ A ) , ahol x ∉ P a r ( A ) ( B 7 ) a ( B 1 ) − ( B 6 ) semak altalanositasai ( M P ) { A ⊃ B , A } ⊢ B {\displaystyle \scriptstyle {\begin{array}{cl}(B1)&A\supset (B\supset A)\\(B2)&(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))\\(B3)&(\lnot A\supset B)\supset ((\lnot A\supset \lnot B)\supset A)\\(B4)&\forall xA\supset [A(x\parallel t)]\\(B5)&(\forall x(A\supset B)\supset (\forall xA\supset \forall xB))\\(B6)&(A\supset (\forall x\cdot A){\text{, ahol }}x\notin Par(A)\\(B7)&{\text{ a }}(B1)-(B6){\text{ semak altalanositasai}}\\(MP)&\{A\supset B,A\}\vdash B\\\end{array}}}
( A 1 ) ( A ⊃ ( B ⊃ A ) ) ( A 2 ) ( ( A ⊃ ( B ⊃ C ) ) ⊃ ( ( A ⊃ B ) ⊃ ( A ⊃ C ) ) ) ( A 3 ) ( ( ∼ A ⊃∼ B ) ⊃ ( B ⊃ A ) ) ( A 4 ) ( ∀ x ⋅ A ⊃ A x t ) ( A 5 ) ( ∀ x ( A ⊃ B ) ⊃ ( ∀ x ⋅ A ⊃ ∀ x ⋅ B ) ) ( A 6 ) ( A ⊃ ( ∀ x ⋅ A ) - ha A -ban x -nek nincs szabad elofordulasa ( A 7 ) ( σ = σ ) ( A 8 ) ( x = y ⊃ ( A z x = A z y ) ) ( M P ) { A , A ⊃ B } ⊢ B {\displaystyle \scriptstyle {\begin{array}{cl}(A1)&(A\supset (B\supset A))\\(A2)&((A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C)))\\(A3)&((\sim A\supset \sim B)\supset (B\supset A))\\(A4)&(\forall x\cdot A\supset A_{x}^{t})\\(A5)&(\forall x(A\supset B)\supset (\forall x\cdot A\supset \forall x\cdot B))\\(A6)&(A\supset (\forall x\cdot A){\text{- ha }}A{\text{-ban }}x{\text{-nek nincs szabad elofordulasa}}\\(A7)&(\sigma =\sigma )\\(A8)&(x=y\supset (A_{z}^{x}=A_{z}^{y}))\\(MP)&\{A,A\supset B\}\vdash B\\\end{array}}}