tisztaság képlete excitation purity p e = ( x − x n ) 2 + ( y − y n ) 2 ( x I − x n ) 2 + ( y I − y n ) 2 {\displaystyle p_{e}={\sqrt {\frac {\left(x-x_{n}\right)^{2}+\left(y-y_{n}\right)^{2}}{\left(x_{I}-x_{n}\right)^{2}+\left(y_{I}-y_{n}\right)^{2}}}}}
R ′ = R / 255 {\displaystyle R'=R/255} , G ′ = G / 255 {\displaystyle G'=G/255} , B ′ = B / 255 {\displaystyle B'=B/255}
C m i n = m i n ( R ′ , G ′ , B ′ ) {\displaystyle Cmin=min(R',G',B')} , C m a x = m a x ( R ′ , G ′ , B ′ ) {\displaystyle Cmax=max(R',G',B')} (Value), T e r j = C m a x − C m i n {\displaystyle Terj=Cmax-Cmin} , L = ( C m a x + C m i n ) / 2 {\displaystyle L=(Cmax+Cmin)/2} (Lightness), I = ( R ′ + G ′ + B ′ ) / 3 {\displaystyle I=(R'+G'+B')/3} (Intensitas)
S L = ( C m a x − C m i n ) / ( 1 − a b s ( 2. L − 1 ) ) {\displaystyle S_{L}=(Cmax-Cmin)/(1-abs(2.L-1))} Saturation (Lightness), S V = T e r j / C m a x = C m a x − C m i n C m a x {\displaystyle S_{V}=Terj/Cmax={\frac {Cmax-Cmin}{Cmax}}} Saturation (Value)
S I = 1 − C m i n I {\displaystyle S_{I}=1-{\frac {Cmin}{I}}} Saturation (Intensitas)
Y ( 1 − y ϵ w ) {\displaystyle Y(1-y\epsilon _{w})} 100 ( y . ϵ λ − y λ ϵ λ ) {\displaystyle 100(y.\epsilon _{\lambda }-y_{\lambda }\epsilon _{\lambda })}
Y λ ( 1 − y ϵ w ) {\displaystyle Y_{\lambda }(1-y\epsilon _{w})}
100 ( y . ϵ λ − y λ ϵ λ ) + Y λ ( 1 − y ϵ w ) {\displaystyle 100(y.\epsilon _{\lambda }-y_{\lambda }\epsilon _{\lambda })+Y_{\lambda }(1-y\epsilon _{w})}
T = 100 Y ( 1 − y ϵ w ) 100 ( y . ϵ λ − y λ ϵ λ ) + Y λ ( 1 − y ϵ w ) {\displaystyle T=100{\frac {Y(1-y\epsilon _{w})}{100(y.\epsilon _{\lambda }-y_{\lambda }\epsilon _{\lambda })+Y_{\lambda }(1-y\epsilon _{w})}}}
Vividness élénkség V = L ∗ 2 + C ∗ 2 {\displaystyle V={\sqrt {L^{*}2}}+{C^{*}2}}
T w , 10 = 900 ( x n , 10 − x 10 ) − 650 ( y n , 10 − y 10 ) {\displaystyle T_{w,10}=900(x_{n,10}-x_{10})-650(y_{n,10}-y_{10})} W = Y + 800 ( x n − x ) + 1700 ( y n − y ) {\displaystyle W=Y+800(x_{n}-x)+1700(y_{n}-y)}