Szerkesztő:Deac Robi/próbalap
A centripetális erő
[szerkesztés]A centripetális erő (a latin: centrum , "középont" és a petere "keresni") olyan erő, ami miatt a test egy íves utat követ. Iránya mindig meröleges a test mozgására és az út görbületének ,illetve pillanatnyi görbületének rögzitett pontja felé. Isaac Newton úgy jellemezte hogy, "egy olyan erö, amelyel a testeket elmozditják vagy meghuzzák és ezáltal bármilyen módon hajlamosak egy központ felé mutatni." A Newtoni mechanikában a gravitació biztosítja a csillagászati keringésekért felelős centripetális erőt.
A centripetális erővel kapcsolatos egyik leggyakoribb példa az az eset,amikor egy test állandó sebességgel mozog egy körkörös úton. A centripetális erő a mozgásra merőlegesen, és a sugár mentén a körút közepe felé is irányul. A centripetális erő matematikai ábrázolását 1659-ben a holland fizikus, Christiaan Huygens jegyezte le.
Formula
[szerkesztés]Egy m tömegű test, amely v tangenciális sebességgel mozog egy r sugarú kör út mentén,aminek a centripetális erőének nagysága kifejezhető mint:
Ahol az a centripetális gyorsulás. Az erő iránya annak a körnek a középpontja felé irányul, amelyben az objektum mozog, vagy az oszcilláló kör felé (az a kör, amely a legjobban illeszkedik a tárgy helyi útjához, ha az út nem kör alakú). A képletben a sebesség a négyzeten jelenik meg ami azt jelenti, hogy sebesség kétszeresére az erő négyszeresére van szükség. A görbületi sugarakkal való fordított kapcsolat azt mutatja, hogy a sugárirányú távolság felének kétszeres erőre van szükség. Ezt az erőt néha a tárgy szögsebessége alapján a kör középpontjába irják a képletben lévő tangenciális sebességhez viszonyítva
tehát
felhasználva a kör peridusát T kapjuk azt hogy
ezek után az egyenlet ugy alakul hogy
A részecskegyorsítókban a sebesség nagyon nagy lehet (közel a vákumban lévő fénysebességhez), tehát ugyanaz a nyugalmi tömeg most nagyobb tehetetlenséget (relativista tömeget) eredményez, tehát nagyobb erőt igényel ugyanazon centripetalális gyorsuláshoz, tehát az egyenlet:
ahol:
- a Lorentz faktornak nevezik.
Eredete
[szerkesztés]Abban az esetben, ha egy tárgy vízszintes síkban egy kötél végén ingadozik, akkor a tárgyra a centripetalális erőt a kötél feszítése adja. A kötél példa a " húzó erőre " ad egy nagyon jo példát. Newton-nak az volt a megjegyzése hogy egy centripetális erő, megfelel annak,amelyet manapság központi erőnek neveznek. Amikor egy műhold kering a bolygó pályája körül, a gravitációt centripetális erőnek tekintik, annak ellenére, hogy excentrikus pályák esetén a gravitációs erő a fókusz felé irányul, nem pedig a pillanatnyi görbület középpontjába. A centripetalális erő egy másik példája merül fel a spirálban, amely arra vezethető vissza, amikor egy töltött részecske egységes mágneses mezőben mozog más külső erő hiányában. Ebben az esetben a mágneses erő a centripetális erő, amely a spirális tengely felé hat.
jegyzet
[szerkesztés]Ez a szócikk részben vagy egészben a Centripetal force című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.