Ugrás a tartalomhoz

Sierpiński-felbontás

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A Sierpiński-felbontás egy meglehetősen paradox, a kontinuumhipotézist használó halmazelméleti konstrukció.

Az állítás

[szerkesztés]

Sierpiński-felbontásnak nevezzük a sík felbontását két halmaz, A és B uniójára úgy, hogy a következő teljesül:

  • A metszete minden vízszintes egyenessel megszámlálható,
  • B metszete minden függőleges egyenessel megszámlálható.

A tétel

[szerkesztés]

Ha igaz a kontinuumhipotézis, akkor a síknak létezik Sierpiński-felbontása. Sőt a kontinuumhipotézis ekvivalens ilyen felbontás létezésével.


Jelentősége

[szerkesztés]

Szorítkozzunk csak a egységnégyzetre. Ha ekkor az halmaz karakterisztikus függvénye, tehát , ha és , ha , akkor

felhasználva, hogy a Lebesgue-integrál nem változik, ha a függvény értékét megszámlálható sok pontban megváltoztatjuk, így, egy olyan -beli függvény integrálja, ami megszámlálható sok pontban 0, a többi helyen 1, 1, ha pedig a függvény megszámlálható sok pontban 1, a többi helyen 0, akkor integrálja is 0. Úgy is lehet fogalmazni, hogy nem mérhető.

Változatok

[szerkesztés]

A Freiling-féle dárdaparadoxon

[szerkesztés]

Ez a frappáns átfogalmazás Chris Freilingtől ered.

Tegyük fel a kontinuumhipotézist. Ekkor a sík pontjai felsorolhatók, mint . Ketten játszanak, először Első, azután Második beledobja dárdáját a céltáblába, ami a sík. Mondjuk Első eltalálja -t, Második -t. A halmaz megszámlálható, tehát nullmértékű. Második ezt nem találhatja el, pontosabban csak nulla valószínűséggel találhatja el. Tehát 1 valószínűséggel . Ezután kinyílik az ajtó és belép valaki a kocsmába. Ránéz a céltáblára és megmondja hogy melyik volt Első dobása (a kisebb) és melyik Másodiké (a nagyobb indexű pont) és 1 valószínűséggel igaza van.

A háromdimenziós eset

[szerkesztés]

Hasonlóképpen, szintén a kontinuumhipotézisssel igazolható, hogy a háromdimenziós euklideszi tér, R3 felbontható három halmaz, A, B és C egyesítésére, hogy

  • A metszete minden az x tengellyel párhuzamos egyenessel véges,
  • B metszete minden az y tengellyel párhuzamos egyenessel véges,
  • C metszete minden a z tengellyel párhuzamos egyenessel véges.