Ugrás a tartalomhoz

Khatri–Rao-szorzat

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából
(Khatri‑Rao-szorzat szócikkből átirányítva)

Mátrixok szorzásánál a Khatri–Rao-szorzat definíciója:[1][2]

, ahol az ij indexű blokk mipi × njqj méretű Kronecker-szorzata a megfelelő blokkoknak, feltéve, hogy a két mátrix blokkjainak száma azonos. A szorzat mérete (Σi mipi) × (Σj njqj).

Példák:

1. példa:

2. példa: oszloponkénti Khatri–Rao-szorzat:

kapjuk, hogy:

Face-splitting-szorzat

[szerkesztés]

Példák:[3][4][5][6][7]

Tulajdonságai

[szerkesztés]
[4]
,[5][8]
,[9]

- Hadamard-szorzat.

.[8]
[5][9][10]
[5][10]
[5][10]

Block Face-Splitting-szorzat

[szerkesztés]
Transzponált Block Face-Splitting-szorzat[10]

Példák:[3][5]

.

A transzponált Block Face-Splitting-szorzat[3][5]

[szerkesztés]
.

Tulajdonságai

[szerkesztés]
[10]

Jegyzetek

[szerkesztés]
  1. Khatri C. G., C. R. Rao (1968), "Solutions to some functional equations and their applications to characterization of probability distributions", Sankhya 30: 167–180, <http://sankhya.isical.ac.in/search/30a2/30a2019.html>. Hozzáférés ideje: 2020-07-12
  2. Zhang X, Yang Z, Cao C. (2002), "Inequalities involving Khatri-Rao products of positive semi-definite matrices", Applied Mathematics E-notes 2: 117–124
  3. a b c Slyusar, V. I. (1996. december 27.). „End products in matrices in radar applications.”. Radioelectronics and Communications Systems.– 1998, Vol. 41; Number 3, 50–53. o. 
  4. a b Slyusar, V. I. (1997. május 20.). „Analytical model of the digital antenna array on a basis of face-splitting matrix products.”. Proc. ICATT- 97, Kyiv, 108–109. o. 
  5. a b c d e f g Slyusar, V. I. (1999. november 23.). „A Family of Face Products of Matrices and its Properties”. Cybernetics and Systems Analysis C/C of Kibernetika I Sistemnyi Analiz 35 (3), 379–384. o. DOI:10.1007/BF02733426. 
  6. Slyusar, V. I. (2003. november 23.). „Generalized face-products of matrices in models of digital antenna arrays with nonidentical channels”. Radioelectronics and Communications Systems 46 (10), 9–17. o. 
  7. Anna Esteve, Eva Boj & Josep Fortiana (2009): Interaction Terms in Distance-Based Regression, Communications in Statistics - Theory and Methods, 38:19, P. 3501 [1]
  8. a b Slyusar, V. I. (1997. szeptember 15.). „New operations of matrices product for applications of radars”. Proc. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-97), Lviv., 73–74. o. 
  9. a b C. Radhakrishna Rao. Estimation of Heteroscedastic Variances in Linear Models.//Journal of the American Statistical Association, Vol. 65, No. 329 (Mar., 1970), pp. 161-172
  10. a b c d e Vadym Slyusar. New Matrix Operations for DSP (Lecture). April 1999. - DOI: 10.13140/RG.2.2.31620.76164/1

Irodalom

[szerkesztés]