Két változó sztochasztikus különbségének mérése
|
Ez a szócikk egy középiskolai dolgozat vagy egyetemi jegyzet stílusában íródott. |
|
Ez a szócikk vagy szakasz lektorálásra, tartalmi javításokra szorul. |
Sztochasztikus egyenlőség
[szerkesztés]Legyen X és Y két valószínűségi változó. Ha a V=Y-X különbségváltozó folytonos akkor a Med(V)=0 a medián definíciója alapján ekvivalens azzal, hogy nullánál nagyobb és kisebb V értékek ugyanakkor valószínűséggel fordulnak elő; Ho: P(V>0)=P(V<0) p+=P(Y>X) és p-=P(Y<X) Ho: azt állítja, hogy a vizsgált populációban a személyek ugyanakkora hányadánál fordul elő, hogy Y értéke nagyobb X-nél és az, hogy X értéke nagyobb mint Y. Ekkor X,Y sztochasztikusan egyenlők.
Ha X, Y-ra nem teljesül a sztochasztikus egyenlőség akkor közük sztochasztikus egyenlőtlenség áll fenn.
Sztochasztikus különbség
[szerkesztés]Megmutatja, hogy mennyivel nagyobb annak a valószínűsége, hogy Y nagyobb mint X, mint hogy X nagyobb Y-nál. értéke -1 és 1 között változhat. Ha pozitív, akkor Y sztochasztikusan nagyobb mint X, és ha negatív, akkor Y sztochasztikusan kisebb mint X.
Valószínűségi fölény mutató
[szerkesztés]A(Y,X)= képlettel definiáljuk, ahol Y és X változó egyenlőségének valószínűsége. Folytonos V=Y-X változó esetén miatt egyszerűen azt mutatja, hogy milyen valószínűséggel fordul az elő, hogy az Y változó nagyobb az X változónál. Diszkrét esetben pedig azt, hogy milyen valószínűséggel fordul elő ugyanez, ha az esetek egyik fele valójában X fölényt, másik fele pedig valójában Y fölényt takar és csak a durva kerekítés eredményeképpen lépnek fel megegyező X és Y értékek. A valószínűségi fölény mutatója csak 0 és 1 közötti értékeket vehet föl. Ha , akkor X és Y sztochasztikusan egyenlő. Az Y változó esetén sztochasztikusan nagyobb, esetén pedig sztochasztikusan kisebb, mint X.[1]
Jegyzetek
[szerkesztés]- ↑ Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal