Frattini-részcsoport
A csoportelméletben Frattini-részcsoport a neve egy csoport maximális részcsoportjai metszetének. A csoport Frattini-részcsoportját hagyományosan -vel jelöljük. Ezt a részcsoportot Giovanni Frattini olasz matematikus definiálta először 1885-ben egy a témával foglalkozó cikkben.[1] A kommutatív gyűrűk Jacobson-radikáljának analógja.
Definíció
[szerkesztés]Egy csoport valódi részcsoportját maximális részcsoportnak nevezzük, ha nincs -ben olyan részcsoport, hogy . Jelölje az összes maximális részcsoport metszetét. Akkor , mint részcsoportok metszete, maga is részcsoport, és ezt nevezzük Frattini-részcsoportjának.[2][3]
Példák
[szerkesztés]-nek, a 49 elemű ciklikus csoportnak a hetedrendű elemek által generált csoport a Frattini-részcsoportja, hiszen ebben a csoportban csak ez az egy maximális részcsoport van.
A Klein-csoportban három maximális részcsoport van; ezek mindhárman kételeműek, és így metszetük csak a triviális csoport lehet. A Klein-csoport Frattini-részcsoportja tehát az egyelemű csoport.
Az egész számok additív csoportjában tetszőleges prímszámra maximális részcsoportot alkotnak többszörösei. Ezek metszete egyelemű (csak a 0-t tartalmazza), így ennek a csoportnak is triviális a Frattini-részcsoportja.
Tulajdonságai
[szerkesztés]Mivel az automorfizmusok a maximális részcsoportokat maximális részcsoportokba viszik, a Frattini-részcsoportot magát helyben hagyják, és így karakterisztikus részcsoportja -nek, és így persze normálosztó is.[2]
Ha véges, akkor nilpotens csoport.[3]
A véges p-csoport Frattini-csoportja megkapható a p-edik hatványok részcsoportjának és a kommutátor-részcsoportnak a komplexusszorzataként.[4]
Ha egy véges csoport Frattini-részcsoportja triviális, akkor a csoport centrumának az indexe legfeljebb akkora, mint a kommutátor-részcsoport rendjének a négyzete.[5]
Nyitott kérdés, hogy két csoport direkt szorzatának Frattini-részcsoportja megegyezik-e a Frattini-részcsoportjaik direkt szorzatával.[2]
Nemgenerátorok
[szerkesztés]A csoport részhalmaza generátorhalmaz, ha minden eleme előáll elemeinek és azok inverzeinek véges szorzataként. Valamely elemet nemgenerátornak hívunk, ha minden -et tartalmazó generátorhalmaz az elem nélkül is generálja a csoportot. Az egységelem például minden csoportban nemgenerátor. Egy csoport nemgenerátorai maguk is csoportot alkotnak, és ez a csoport éppen a Frattini-részcsoport.
Források
[szerkesztés]- ↑ Frattini, Giovanni (1885). „Intorno alla generazione dei gruppi di operazioni”. Rendiconti dell'Accademia dei Lincei 4 (1), 281-5, 455-7. o.
- ↑ a b c Pelikán József: Algebra (PDF/Postscript). Összeállította Gröller Ákos. ELTE TTK
- ↑ a b Rose, John S. Group Theory (angol nyelven). New York: Dover Publications (1994). ISBN 0-486-68194-7
- ↑ BZ Ádám a csoportalgebrákról[halott link]
- ↑ Archivált másolat. [2007. július 3-i dátummal az eredetiből archiválva]. (Hozzáférés: 2011. január 22.)