Extenzionalitási axióma
Megjelenés
Az extenzionalitási axióma (röviden: extenzionalitás; olykor: meghatározottsági axióma[1]) a halmazelméleti axiómarendszerek tipikus axiómája:
- Ha az x és az y halmaznak pontosan ugyanazok az elemei, akkor x és y ugyanaz a halmaz.
Általában úgy tartják, hogy ez az axióma fejezi ki a halmazfogalom lényegét: a halmazokat meghatározzák az elemeik.[2]
Változatok
[szerkesztés]- Az axiómát olykor a megfordításával együtt mondják ki:
- Az x és az y halmaznak akkor és csak akkor pontosan ugyanazok az elemei, ha x és y ugyanaz a halmaz.
- Ez a megfogalmazás azonban redundáns; a megfordítás ugyanis logikai igazság.
- A halmazelméleti axiómarendszereket olykor azonosságjel-mentes elsőrendű nyelven vezetik be. Ilyenkor az extenzionalitási axióma a halmazegyenlőség definíciójává válik (a megfordításával együtt kimondott változatában).
- Atomos halmazelméletekben az axióma a következő, gyengébb formát veszi fel:
- ( rövidíti azt, hogy x halmaz.) A gyengítésre azért van szükség, hogy különbséget lehessen tenni az atomok között. Erre a változatra gyenge extenzionalitásként szoktak hivatkozni.
- Osztályrealista halmazelméletekben (például az NBG-ben) általában valódi osztályokra is kiterjesztik az axiómát.
- Andrzej Kisielewicz különös kétepszilonos halmazelméletének (double extension set theory) különféle változatai a következő formában mondják ki az extenzionalitási axiómát:
- (Itt és két különböző tartalmazási reláció.)[3] Ez az egyetlen ismert példa olyan halmazelméletre, amely lényegesen eltér a szokásos extenzionalitási axiómától.
Jegyzetek
[szerkesztés]Irodalom
[szerkesztés]- Hajnal András - Hamburger Péter: Halmazelmélet. Tankönyvkiadó, 1983.
- Thomas Jech: Set Theory: The Third Millennium Edition. Springer, 2003.
- Andrzej Kisielewicz: Double extension set theory. Reports on Mathematical Logic 23(1989).