Deltoid
A geometriában a deltoid olyan tengelyesen szimmetrikus négyszög, melynek az egyik átlója a szimmetriatengelye és melynek két-két egymás melletti oldala azonos hosszúságú. (Ha mind a négy oldal azonos hosszúságú, akkor a deltoid egyúttal rombusz is, ha ezenfelül közbezárt szögük derékszög, négyzet is.) Ebből az is következik, hogy van a vele szemközti szöggel egybevágó szöge, és hogy a konvex deltoid egyik átlója merőlegesen metszi a másikat, és szimmetria okokból felezi azt. A konkáv deltoid átlói elkerülik egymást, nem metszők, de az átlókra fektetett egyenesek ekkor is merőlegesen metszik egymást.
Területe
[szerkesztés]Ha és a deltoid oldalai és a nem megegyező oldalak által bezárt szög, és a deltoid két átlója, akkor a deltoid területe a következőképpen számítható:
Minden deltoidnak van legalább egy szimmetriatengelye. Minden konvex deltoid érintőnégyszög, de a konkáv deltoid esetében is igaz, hogy az oldalaira fektetett 4 egyenes egy kör 4 érintője, csupán az érintési pontok közül kettő nem a deltoid oldalára esik.
Kerülete
[szerkesztés]
Források
[szerkesztés]- Kite a PlanetMath oldalain