Cauchy-féle középértéktétel
Megjelenés
Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. |
A Cauchy-féle középértéktétel a differenciálszámítás egyik alaptétele.
Állítás
[szerkesztés]Ha az f és g függvények [a, b]-ben folytonosak, (a,b)-ben differenciálhatóak és g'(x) ≠ 0, ha x (a, b), akkor van olyan ξ (a, b), amire fennáll a következő egyenlőség:
Bizonyítás
[szerkesztés]Tekintsük az x [a, b]; F(x)=f(x)+λg(x) függvényt, ahol λ egy konstans. Határozzuk meg λ-t úgy, hogy F(x) a és b helyeken ugyanazt az értéket vegye fel. Vagyis legyen F(a)=F(b), tehát f(a)+λg(a)=f(b)+λg(b). Innen:
g(b) ≠ g(a), mert akkor a Rolle-féle középértéktétel szerint (a, b)-on g'(x)-nek lenne zérushelye.
F(x)-re alkalmazzuk a Rolle-féle középértéktételt: létezik olyan ξ (a, b), hogy F'(ξ)=0.
λ-t behelyettesítve és felhasználva hogy, F'(ξ)=0:
Az egyenletet rendezve: