Bethe-rács
A Bethe-rács vagy Cayley-fa olyan gráfelméleti fa, melynek minden csúcsa z fokszámú. Ezt a z számot nevezik a rács koordinációs számának is. A Bethe-rács tekinthető egy központi csúcsból induló fa-szerkezetnek is, ahol a további csúcsok héjakként szerveződnék a központi csúcs köré. A középső csúcsot hívhatjuk a gráf gyökerének vagy origójának.
A fogalmat Hans Albrecht Bethe vezette be 1935-ben.
A k. héjon lévő csúcsok száma a következőképpen adódik:
Egyes esetekben a definíció úgy módosul, hogy a gyökércsúcs csak z ‒ 1 szomszéddal rendelkezik.
Kapcsolat a Cayley-gráfokkal
[szerkesztés]A 2n fokszámú Bethe-rács lényegében az n generátorú szabad csoport Cayley-gráfja.
Lie-csoportokban
[szerkesztés]A Bethe-rácsok megjelennek egyes hiperbolikus Lie-csoportok diszkrét részcsoportjaiként is, mint például a Fuchs-csoport. Ilyen esetekben a Bethe-rácsok csoportelméleti értelemben is rácsot alkotnak.
Fordítás
[szerkesztés]- Ez a szócikk részben vagy egészben a Bethe lattice című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Források
[szerkesztés]- H. A. Bethe. Statistical theory of superlattices Ser A, 150. Proc. Roy. Soc. London, 552-575. o. (1935)