Ugrás a tartalomhoz

Üres függvény

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A matematikai üres függvény fogalma alatt olyan függvényt értünk, melynek értelmezési tartománya az üres halmaz. Minden A halmazhoz pontosan egy ilyen üres függvény létezik:

Az üres függvény grafikonja a Descartes-szorzat részhalmaza. Mivel a szorzat üres, egyetlen részhalmaza maga az üres halmaz. Ez érvényes hozzárendelés, hiszen az értelmezési tartomány minden x-ére létezik olyan egyedi y az A értékkészletben, hogy . Ez az állítás az üres igazságok mintapéldánya, hiszen nincsen x az értelmezési tartományban.

Az hozzárendelést megvalósító üres függvény létezése szükséges ahhoz, hogy a halmazok kategóriája (Set) kategória lehessen, mivel a kategória minden objektumának rendelkeznie kell identitásmorfizmussal, és az egyetlen üres függvény az objektum identitása. A kardinális aritmetikában azt jelenti, hogy minden k kardinális számra k0 = 1; ez különösen mély, ha a k = 0-t tekintjük.

Jegyzetek

[szerkesztés]
  • Herrlich, Horst and Strecker, George E., Category Theory, Heldermann Verlag (2007).