Ugrás a tartalomhoz

Összefüggések a háromszög oldalai és szögei között

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából

A tétel azt állítja, hogy a háromszögben a legnagyobb oldallal szemközt van a legnagyobb szög. A tétel megfordítása is igaz, vagyis a legnagyobb szöggel szemközti oldal a legnagyobb.

A tétel a koszinusztétel egy változatának tekinthető.

Tétel a háromszögek leghosszabb oldaláról

[szerkesztés]

Minden háromszögben a legnagyobb oldallal szemben a legnagyobb szög van.

Bizonyítás:

Felhasználjuk, hogy egyenlő oldallal szemben egyenlő szögek vannak. Legyen , szakaszt felmérjük -ből -re, így kapjuk a pontot. háromszög egyenlő szárú, szögei . , mert szögszár a szög belsejében halad. , mert az háromszög csúcsánál lévő külső szöge. .

A tétel megfordítása

[szerkesztés]

Minden háromszögben a legnagyobb szöggel szemben a legnagyobb oldal van.

Bizonyítás (indirekt módon):

háromszögben legyen . Tegyük fel, hogy nem igaz, azaz . Ha így lenne, akkor vagy azonos szög vagy nagyobb szög lenne, de ez ellentmond a feltevésnek. Tehát rossz volt a állítás, így .

A háromszög szögeinek kiszámítása oldalaiból

[szerkesztés]

A koszinusztétel szerint tetszőleges háromszögben

A γ szög szinusza:

A szinuszos képlet alkalmazása esetén figyelembe kell venni, hogy a háromszögben a nagyobb szöggel szembeni oldal nagyobb.

Kapcsolódó szócikkek

[szerkesztés]