Szferoid
Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. |
A szferoid vagy más néven forgási ellipszoid vagy kéttengelyű ellipszoid egy mértani test, amelyet akkor kapunk, ha egy ellipszist valamelyik tengelye mentén megpörgetünk. A szferoid speciális esete az ellipszoidnak, amikor az ellipszoid három tengelye közül kettő egyforma hosszúságú.
Amennyiben az ellipszist a rövidebb tengelye körül pörgetjük meg, lapos ún. lencseszferoidot kapunk. Ha viszont a hosszabbik tengelye körül forgatjuk meg az ellipszist, hosszúkás, ún. orsószferoidot kapunk.
A gömb pedig a szferoid speciális esete, amikor a megpörgetett ellipszis kör, vagy másképpen az ellipszoid mindhárom tengelye egyforma hosszú.
Matematikai alakja
[szerkesztés]Mivel az ellipszoid egyenletében szereplő három tengely közül kettő egyforma, a szferoid egyenlete is leegyszerűsödik az alábbi formára:
ahol X,Y és Z a térbeli koordináták, a és b pedig a megpörgetett ellipszis fél kis-, illetve fél nagytengelye attól függően, hogy az ellipszist a kis- vagy a nagytengelye mentén pörgettük meg.
Térfogata
[szerkesztés]Jelölje a a nagytengelyt, és b a kistengelyt.
Ekkor az orsószferoid térfogata
és a lencseszferoidé
Felszíne
[szerkesztés]Legyen ismét a a nagytengely, és b a kistengely.
Ekkor az orsószferoid felszíne
- ,
és a lencseszferoidé
- .
Gyakorlati jelentősége
[szerkesztés]A forgási orsószferoid kézenfekvő példái a boroshordók - ha egy ilyen szferoidot végeinél szimmetrikusan, a forgástengelyre merőlegesen csonkolunk, hordó alakot kapunk.
A szferoidnak a geometriai fontosságán túlmenően szerepe van a Föld, illetve más, gyorsan forgó égitestek alakjának (például Jupiter, Szaturnusz) meghatározásában.
Tekintve, hogy kis eltérések azért vannak a Föld tényleges alakja és bármely erre illeszkedő szferoid között, geodéziai feladat az adott területre vagy problématípusra kiszámolni a legjobban illeszkedő szferoidot. A Föld esetében a Föld matematikai alakját, a geoidot globálisan igen jól lehet közelíteni egy szferoiddal, az eltérés a legjobban illeszkedő szferoid és a geoid között nem haladja meg a 150 métert. (Az eltérést magát geoidundulációnak nevezzük.)
A térképészetben azonban nemcsak globálisan illeszkedő szferoidokat használnak, hanem a térképezendő területre még jobban illeszkedő, a globálistól eltérő paraméterekkel és térbeli elhelyezéssel bíró forgási ellipszoidokat.
Ennek megfelelően az egyes országok különféle szferoidokat használnak térképi/geodéziai alapnak. Magyarország a múlt századi háromszögelési hálózatai alapjául a Bessel-féle ellipszoidot, a második világháború utáni háromszögeléshez a Kraszovszkij-féle ellipszoidot alkalmazta. Az Egységes Országos Vetületi rendszer EOV létrehozásakor alapfelületként a Nemzetközi Geodéziai és Geofizikai Unió 1967. évi Geodéziai Vonatkozási Rendszerét (Geodetic Reference System), az IUGG GRS 1967 ellipszoidot választották alapnak. A GPS (Global Positioning System) a geocentrikus WGS 84 (WGS: World Geodetic System) ellipszoidot használja.
A felszínformulák levezetése
[szerkesztés]Legyen az a nagytengelyű és b kistengelyű ellipszoid egyenlete.
Orsószferoid
[szerkesztés]Az első Guldin-szabállyal
Ez annak a forgástestnek a felszíne, ami az ellipszis x tengely körüli forgatásával keletkezik. Itt a generátorgörbe egyenlete , ami az ellipszoid egyenletét y-ra megoldva adódik.
Továbbá szükség van a jobb oldal x szerinti deriváltjára:
Behelyettesítve
Itt kihasználtuk az x tengely körüli forgásszimmetriát.
Az integrál határainak figyelembevételével
Ennek egyszerűsítésével adódik a fenti képlet.
Lencseszferoid
[szerkesztés]A számítások az előzőekhez hasonlók.
Most az ellipszist az y tengely körül forgatjuk meg.
Ismét az első Guldin-szabályt használjuk:
Az ellipszis egyenletét x-re megoldva
és behelyettesítve az és értékeket kapjuk a következőt:
ahol újra kihasználtuk az ellipszoid forgásszimmetriáját.
További helyettesítésekkel és átalakításokkal adódik
amit egyszerűsítve kapjuk a fenti képletet.